In vitro toxicity and bioimaging studies of gold nanorods formulations coated with biofunctional thiol-PEG molecules and Pluronic block copolymers

Tianxun Gong, Douglas Goh, Malini Olivo and Ken-Tye Yong
Beilstein J. Nanotechnol. 2014, 5, 546–553. https://doi.org/10.3762/bjnano.5.64

Supporting Information

Supporting Information File 1: Chemical formula of PEG-SH and Pluronic (PEO–PPO–PEO).
Format: PDF Size: 234.4 KB Download

Cite the Following Article

In vitro toxicity and bioimaging studies of gold nanorods formulations coated with biofunctional thiol-PEG molecules and Pluronic block copolymers
Tianxun Gong, Douglas Goh, Malini Olivo and Ken-Tye Yong
Beilstein J. Nanotechnol. 2014, 5, 546–553. https://doi.org/10.3762/bjnano.5.64

How to Cite

Gong, T.; Goh, D.; Olivo, M.; Yong, K.-T. Beilstein J. Nanotechnol. 2014, 5, 546–553. doi:10.3762/bjnano.5.64

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Ren, R.; Xiong, B.; Zhu, J. Surface Modification of Gold Nanorods: Multifunctional Strategies and Application Prospects. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, 30, e202400851. doi:10.1002/chem.202400851
  • Dyrnesli, H.; Klös, G.; Miola, M.; Sutherland, D. S. Dynamic Modulation of Plasmonic Structures. Journal of Self Assembly and Molecular Electronics 2023, 7, 1–22. doi:10.13052/jsame2245-4551.7.001
  • Javed, R.; Sajjad, A.; Naz, S.; Sajjad, H.; Ao, Q. Significance of Capping Agents of Colloidal Nanoparticles from the Perspective of Drug and Gene Delivery, Bioimaging, and Biosensing: An Insight. International journal of molecular sciences 2022, 23, 10521. doi:10.3390/ijms231810521
  • Sarmah, P.; Choudhary, B. Nanomaterials for Targeted Delivery of Anticancer Drugs: An Overview. Current Nanomaterials 2022, 7, 31–39. doi:10.2174/2405461506666210119095130
  • Kushwaha, P.; Chauhan, P. Influence of different surfactants on morphological, structural, optical, and magnetic properties of α-Fe2O3 nanoparticles synthesized via co-precipitation method. Applied Physics A 2021, 128. doi:10.1007/s00339-021-05157-6
  • Chen, R.; Shi, J.; Liu, C.; Li, J.; Cao, S.
  • Chen, R.; Shi, J.; Liu, C.; Li, J.; Cao, S. In situ self-assembly of gold nanorods with thermal-responsive microgel for multi-synergistic remote drug delivery. Advanced Composites and Hybrid Materials 2021, 5, 2223–2234. doi:10.1007/s42114-021-00306-0
  • Sangeetha, A.; Samyuktha, L.; Atya, K.; Neha, H.; Rakesh, K. S.; Shantveer, G. U.; Kaiser, J. Evaluation of Biological Effects and Toxicity of Cetyltrimethylammonium Bromide Stabilized Silver Nanoparticles and Cetyltrimethylammonium Bromide Alone Following Intravenous Injection in Mice. Current Nanomedicine 2021, 11, 70–80. doi:10.2174/2468187310666201207205245
  • Peerzade, S. A. M. A.; Qin, X.; Laroche, F.; Palantavida, S.; Dokukin, M.; Peng, B.; Feng, H.; Sokolov, I. M. Ultrabright fluorescent silica nanoparticles for in vivo targeting of xenografted human tumors and cancer cells in zebrafish. Nanoscale 2019, 11, 22316–22327. doi:10.1039/c9nr06371d
  • de Lima Zanetti, M. R.; Percebom, A. M.; Ribeiro, T. A.; Dias, M. L.; Oliveira, A. P.; Júnior, E. R.; Rossi, A. L.; Soares, C. A. G.; Picciani, P. H. S. Improving in vitro biocompatibility of gold nanorods with thiol-terminated triblock copolymer. Colloid and Polymer Science 2019, 297, 1477–1487. doi:10.1007/s00396-019-04553-y
  • Alex, S. A.; Chandrasekaran, N.; Mukherjee, A. Effect of negative functionalisation of gold nanorods on conformation and activity of human serum albumin. IET Nanobiotechnology 2019, 13, 522–529. doi:10.1049/iet-nbt.2018.5408
  • Abu Noqta, O.; Aziz, A. A.; Usman, I. A.; Bououdina, M. Recent Advances in Iron Oxide Nanoparticles (IONPs): Synthesis and Surface Modification for Biomedical Applications. Journal of Superconductivity and Novel Magnetism 2018, 32, 779–795. doi:10.1007/s10948-018-4939-6
  • Luo, Z.; Xu, Y.; Ye, E.; Li, Z.; Wu, Y.-L. Recent Progress in Macromolecule-Anchored Hybrid Gold Nanomaterials for Biomedical Applications. Macromolecular rapid communications 2018, 40, 1800029. doi:10.1002/marc.201800029
  • Nagaoka, R.; Tabata, T.; Yoshizawa, S.; Umemura, S.-i.; Saijo, Y. Visualization of murine lymph vessels using photoacoustic imaging with contrast agents. Photoacoustics 2018, 9, 39–48. doi:10.1016/j.pacs.2018.01.001
  • Zhou, J.; Cao, Z.; Panwar, N.; Hu, R.; Wang, X.; Qu, J.; Tjin, S. C.; Xu, G.; Yong, K.-T. Functionalized gold nanorods for nanomedicine: Past, present and future. Coordination Chemistry Reviews 2017, 352, 15–66. doi:10.1016/j.ccr.2017.08.020
  • Lingabathula, H.; Yellu, N. Assessment of oxidative stress induced by gold nanorods following intra-tracheal instillation in rats. Drug and chemical toxicology 2017, 41, 141–146. doi:10.1080/01480545.2017.1321012
  • Almada, M.; Leal-Martínez, B.; Hassan, N.; Kogan, M. J.; Burboa, M. G.; Topete, A.; Valdez, M. A.; Juárez, J. Photothermal conversion efficiency and cytotoxic effect of gold nanorods stabilized with chitosan, alginate and poly(vinyl alcohol). Materials science & engineering. C, Materials for biological applications 2017, 77, 583–593. doi:10.1016/j.msec.2017.03.218
  • Alex, S. A.; Rajiv, S.; Chakravarty, S.; Chandrasekaran, N.; Mukherjee, A. Significance of surface functionalization of Gold Nanorods for reduced effect on IgG stability and minimization of cytotoxicity. Materials science & engineering. C, Materials for biological applications 2016, 71, 744–754. doi:10.1016/j.msec.2016.10.061
  • Uz, M.; Bulmus, V.; Altinkaya, S. A. Effect of PEG Grafting Density and Hydrodynamic Volume on Gold Nanoparticle–Cell Interactions: An Investigation on Cell Cycle, Apoptosis, and DNA Damage. Langmuir : the ACS journal of surfaces and colloids 2016, 32, 5997–6009. doi:10.1021/acs.langmuir.6b01289
  • Ni, M.; Zhuo, S. Nonlinear optical microscopy: Endogenous signals and exogenous probes. Annalen der Physik 2015, 527, 471–489. doi:10.1002/andp.201500119
Other Beilstein-Institut Open Science Activities