Cite the Following Article
High activity of Ag-doped Cd0.1Zn0.9S photocatalyst prepared by the hydrothermal method for hydrogen production under visible-light irradiation
Leny Yuliati, Melody Kimi and Mustaffa Shamsuddin
Beilstein J. Nanotechnol. 2014, 5, 587–595.
https://doi.org/10.3762/bjnano.5.69
How to Cite
Yuliati, L.; Kimi, M.; Shamsuddin, M. Beilstein J. Nanotechnol. 2014, 5, 587–595. doi:10.3762/bjnano.5.69
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Wang, Z.; Lu, D.; Kondamareddy, K. K.; He, Y.; Gu, W.; Li, J.; Fan, H.; Wang, H.; Ho, W. Recent Advances and Insights in Designing ZnxCd1-xS-Based Photocatalysts for Hydrogen Production and Synergistic Selective Oxidation to Value-Added Chemical Production. ACS applied materials & interfaces 2024, 16, 48895–48926. doi:10.1021/acsami.4c09599
- Suciu, R.-C.; Zagrai, M.; Popa, A.; Toloman, D.; Berghian-Grosan, C.; Tudoran, C.; Stefan, M. The Influence of Ag+/Ti4+ Ratio on Structural, Optical and Photocatalytic Properties of MWCNT–TiO2–Ag Nanocomposites. Inorganics 2023, 11, 249. doi:10.3390/inorganics11060249
- Samanta, D.; Basnet, P.; Jha, S.; Chatterjee, S. Proficient route in synthesis of glucose stabilized Ag modified ZnS nanospheres for mechanistic understandings of commercially used dyes degradation. Inorganic Chemistry Communications 2022, 141, 109498. doi:10.1016/j.inoche.2022.109498
- Abdullah, H.; Ginting, R. T.; Sembiring, A. C.; Gultom, N. S.; Shuwanto, H.; Kuo, D.-H. One-pot preparation of multicomponent photocatalyst with (Zn,Co,Ni)(O,S)/Ga2O3 nanocomposites to significantly enhance hydrogen production. New Journal of Chemistry 2021, 45, 19889–19902. doi:10.1039/d1nj02980k
- Debnath, B.; Dhingra, S.; Nagaraja, C. M. Recent Developments in the Design of CdxZn1−xS-Based Photocatalysts for Sustainable Production of Hydrogen. Solar RRL 2021, 5, 2100226. doi:10.1002/solr.202100226
- Gultom, N. S.; Abdullah, H.; Kuo, D.-H. Facile synthesis of cobalt-doped (Zn,Ni)(O,S) as an efficient photocatalyst for hydrogen production. Journal of the Energy Institute 2019, 92, 1428–1439. doi:10.1016/j.joei.2018.08.008
- Ha, M. N.; Wang, L.; Zhao, Z. Doping effects on mixed-phase crystalline perovskite AxSr1−xFeO3−δ (A = Pr, Sm; 0 ≤ x ≤ 0.8) nanoparticles and their application for photodegradation of rhodamine B. Research on Chemical Intermediates 2018, 45, 1493–1508. doi:10.1007/s11164-018-3676-6
- Gultom, N. S.; Abdullah, H.; Kuo, D.-H. Enhanced photocatalytic hydrogen production of noble-metal free Ni-doped Zn(O,S) in ethanol solution. International Journal of Hydrogen Energy 2017, 42, 25891–25902. doi:10.1016/j.ijhydene.2017.08.198
- Hao, Y.; Kang, S.-Z.; Liu, X.; Li, X.; Qin, L.; Mu, J. An Efficient Noble-Metal-Free Photocatalyst for Visible-Light-Driven H2 Evolution: Cu/Ni-Codoped Cd0.5Zn0.5S Nanoplates. ACS Sustainable Chemistry & Engineering 2016, 5, 1165–1172. doi:10.1021/acssuschemeng.6b02499
- Gui, M. M.; Wong, W. M. P.; Chai, S.-P.; Mohamed, A. R. One-pot synthesis of Ag-MWCNT@TiO2 core–shell nanocomposites for photocatalytic reduction of CO2 with water under visible light irradiation. Chemical Engineering Journal 2015, 278, 272–278. doi:10.1016/j.cej.2014.09.022
- Gholipour, M. R.; Dinh, C.-T.; Béland, F.; Do, T.-O. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 2015, 7, 8187–8208. doi:10.1039/c4nr07224c
- Quintans, C. S.; Kato, H.; Kobayashi, M.; Kaga, H.; Iwase, A.; Kudo, A.; Kakihana, M. Improvement of hydrogen evolution under visible light over Zn1−2x(CuGa)xGa2S4 photocatalysts by synthesis utilizing a polymerizable complex method. Journal of Materials Chemistry A 2015, 3, 14239–14244. doi:10.1039/c5ta02114f