The optimal shape of elastomer mushroom-like fibers for high and robust adhesion

Burak Aksak, Korhan Sahin and Metin Sitti
Beilstein J. Nanotechnol. 2014, 5, 630–638. https://doi.org/10.3762/bjnano.5.74

Supporting Information

Supporting Information File 1: Details of mathematical modeling.
Format: PDF Size: 331.9 KB Download

Cite the Following Article

The optimal shape of elastomer mushroom-like fibers for high and robust adhesion
Burak Aksak, Korhan Sahin and Metin Sitti
Beilstein J. Nanotechnol. 2014, 5, 630–638. https://doi.org/10.3762/bjnano.5.74

How to Cite

Aksak, B.; Sahin, K.; Sitti, M. Beilstein J. Nanotechnol. 2014, 5, 630–638. doi:10.3762/bjnano.5.74

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Stabile, C. J.; Turner, K. T. High Strength and Dynamically Tunable Adhesion Enabled by Composite Micropillar Arrays Fabricated via Solvent‐Assisted Molding. Advanced Materials Technologies 2024. doi:10.1002/admt.202401588
  • Violano, G.; Dibitonto, S.; Afferrante, L. Role of viscoelasticity in the adhesion of mushroom-shaped pillars. Bioinspiration & biomimetics 2024, 19, 66006. doi:10.1088/1748-3190/ad839d
  • Violano, G.; Dibitonto, S.; Afferrante, L. Adhesive contact mechanics of bio-inspired pillars: Exploring hysteresis and detachment modes. International Journal of Adhesion and Adhesives 2024, 134, 103768. doi:10.1016/j.ijadhadh.2024.103768
  • Eray, T. A Fast Numerical Approach for Investigating Adhesion Strength in Fibrillar Structures: Impact of Buckling and Roughness. Lubricants 2024, 12, 294. doi:10.3390/lubricants12080294
  • Zhao, J.; Xia, N.; Zhang, L. A review of bioinspired dry adhesives: from achieving strong adhesion to realizing switchable adhesion. Bioinspiration & biomimetics 2024, 19, 51003–051003. doi:10.1088/1748-3190/ad62cf
  • Li, J.; Yin, F.; Tian, Y. Biomimetic Structure and Surface for Grasping Tasks. Biomimetics (Basel, Switzerland) 2024, 9, 144. doi:10.3390/biomimetics9030144
  • Li, R.; Li, D.; Sun, J.; Zhang, X.; Zhang, W. Pull-off dynamics of mushroom-shaped adhesive structures. Journal of the Mechanics and Physics of Solids 2024, 183, 105519. doi:10.1016/j.jmps.2023.105519
  • Qin, H.; Zhang, C.; Tan, W.; Yang, L.; Wang, R.; Zhang, Y.; Wang, F.; Liu, L. Bionic Adhesion Systems: From Natural Design to Artificial Application. Advanced Materials Technologies 2023, 9. doi:10.1002/admt.202301387
  • Kim, Y.; Yeo, J.; Park, K.; Destrée, A.; Qin, Z.; Ryu, S. Designing directional adhesive pillars using deep learning-based optimization, 3D printing, and testing. Mechanics of Materials 2023, 185, 104778. doi:10.1016/j.mechmat.2023.104778
  • Dayan, C. B.; Son, D.; Aghakhani, A.; Wu, Y.; Demir, S. O.; Sitti, M. Machine Learning-Based Shear Optimal Adhesive Microstructures with Experimental Validation. Small (Weinheim an der Bergstrasse, Germany) 2023, 20, e2304437. doi:10.1002/smll.202304437
  • Tong, Z.; Benvidi, F. H.; Bacca, M. Multimaterial Topology Optimization of Adhesive Backing Layers via J-Integral and Strain Energy Minimizations. Journal of Applied Mechanics 2023, 90. doi:10.1115/1.4062842
  • Tarpey, R.; Ronan, W. The influence of substrate stiffness on interfacial stresses for adhesive microfibrils. Journal of the Mechanics and Physics of Solids 2023, 172, 105175. doi:10.1016/j.jmps.2022.105175
  • Pande, S. S.; Turner, K. T. Geometric optimization of pillars for enhanced adhesion. Extreme Mechanics Letters 2023, 59, 101969. doi:10.1016/j.eml.2023.101969
  • Yao, H.; Gao, Y. Mechanics Underlying the Structure-Property Relations Unveiled From Natural Biomaterials. Comprehensive Structural Integrity; Elsevier, 2023; pp 275–302. doi:10.1016/b978-0-12-822944-6.00076-1
  • Ben-Larbi, M. K.; Hensel, R.; Atzeni, G.; Arzt, E.; Stoll, E. Orbital debris removal using micropatterned dry adhesives: Review and recent advances. Progress in Aerospace Sciences 2022, 134, 100850. doi:10.1016/j.paerosci.2022.100850
  • Hui, C.-Y.; Zhu, B.; Ciccotti, M. Finite deformation field near the tip of a Blatz–Ko wedge bonded to a rigid substrate. International Journal of Fracture 2022, 238, 71–87. doi:10.1007/s10704-022-00654-y
  • Luo, A.; Zhang, H.; Turner, K. T. Machine learning-based optimization of the design of composite pillars for dry adhesives. Extreme Mechanics Letters 2022, 54, 101695. doi:10.1016/j.eml.2022.101695
  • Chen, F.; Han, L.; Dong, Y.; Wang, X. Biomimetic Self-Adhesive Structures for Wearable Sensors. Biosensors 2022, 12, 431. doi:10.3390/bios12060431
  • Zhao, J.; Lu, T.; Pan, T.; Li, X.; Shi, M. Mushroom-Shaped Micropillar With a Maximum Pull-Off Force. Journal of Applied Mechanics 2022, 89. doi:10.1115/1.4054628
  • Booth, J. A.; Hensel, R. Perspective on statistical effects in the adhesion of micropatterned surfaces. Applied Physics Letters 2021, 119. doi:10.1063/5.0073181
Other Beilstein-Institut Open Science Activities