Supporting Information
CO2 conversion data at 400 °C, characterization of all relevant intermediates and products by GC–MS, and XRD analysis of the catalyst before and after catalysis are supplied as Supporting Information.
Supporting Information File 1: Additional experimental data. | ||
Format: PDF | Size: 1.1 MB | Download |
Cite the Following Article
Carbon dioxide hydrogenation to aromatic hydrocarbons by using an iron/iron oxide nanocatalyst
Hongwang Wang, Jim Hodgson, Tej B. Shrestha, Prem S. Thapa, David Moore, Xiaorong Wu, Myles Ikenberry, Deryl L. Troyer, Donghai Wang, Keith L. Hohn and Stefan H. Bossmann
Beilstein J. Nanotechnol. 2014, 5, 760–769.
https://doi.org/10.3762/bjnano.5.88
How to Cite
Wang, H.; Hodgson, J.; Shrestha, T. B.; Thapa, P. S.; Moore, D.; Wu, X.; Ikenberry, M.; Troyer, D. L.; Wang, D.; Hohn, K. L.; Bossmann, S. H. Beilstein J. Nanotechnol. 2014, 5, 760–769. doi:10.3762/bjnano.5.88
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Mathew, J.; Pratihar, S. Properties of Green Nanomaterials as Catalysts and Photocatalysts. Handbook of Green and Sustainable Nanotechnology; Springer International Publishing, 2023; pp 1587–1602. doi:10.1007/978-3-031-16101-8_63
- Al-Qadri, A. A.; Nasser, G. A.; Adamu, H.; Muraza, O.; Saleh, T. A. CO2 utilization in syngas conversion to dimethyl ether and aromatics: Roles and challenges of zeolites-based catalysts. Journal of Energy Chemistry 2023, 79, 418–449. doi:10.1016/j.jechem.2022.12.037
- Xu, Y.; Liu, B.; Jiang, F.; Liu, X. doi:10.1002/9783527827992.ch19
- Ioannou, I.; Javaloyes-Antón, J.; Caballero, J. A.; Guillén-Gosálbez, G. Economic and Environmental Performance of an Integrated CO2 Refinery. ACS sustainable chemistry & engineering 2023, 11, 1949–1961. doi:10.1021/acssuschemeng.2c06724
- Tavares, M.; Westphalen, G.; Araujo Ribeiro de Almeida, J. M.; Romano, P. N.; Sousa-Aguiar, E. F. Modified fischer-tropsch synthesis: A review of highly selective catalysts for yielding olefins and higher hydrocarbons. Frontiers in Nanotechnology 2022, 4. doi:10.3389/fnano.2022.978358
- Mathew, J.; Pratihar, S. Properties of Green Nanomaterials as Catalysts and Photocatalysts. Handbook of Green and Sustainable Nanotechnology; Springer International Publishing, 2022; pp 1–16. doi:10.1007/978-3-030-69023-6_63-1
- Miller, D.; Armstrong, K.; Styring, P. Assessing methods for the production of renewable benzene. Sustainable Production and Consumption 2022, 32, 184–197. doi:10.1016/j.spc.2022.04.019
- Cai, Z.; Zhang, F.; Yu, S.; He, Z.; Cao, X.; Zhang, L.; Huang, K. PBA-derived high-efficiency iron-based catalysts for CO2 hydrogenation. Catalysis Science & Technology 2022, 12, 3826–3835. doi:10.1039/d2cy00629d
- Meys, R.; Kätelhön, A.; Bachmann, M.; Winter, B.; Zibunas, C.; Suh, S.; Bardow, A. Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science (New York, N.Y.) 2021, 374, 71–76. doi:10.1126/science.abg9853
- Nezam, I.; Zhou, W.; Gusmão, G. S.; Realff, M. J.; Wang, Y.; Medford, A. J.; Jones, C. W. Direct aromatization of CO2 via combined CO2 hydrogenation and zeolite-based acid catalysis. Journal of CO2 Utilization 2021, 45, 101405. doi:10.1016/j.jcou.2020.101405
- Kätelhön, A.; Meys, R.; Deutz, S.; Suh, S.; Bardow, A. Climate change mitigation potential of carbon capture and utilization in the chemical industry. Proceedings of the National Academy of Sciences of the United States of America 2019, 116, 11187–11194. doi:10.1073/pnas.1821029116
- Kasipandi, S.; Bae, J. W. Recent Advances in Direct Synthesis of Value-Added Aromatic Chemicals from Syngas by Cascade Reactions over Bifunctional Catalysts. Advanced materials (Deerfield Beach, Fla.) 2019, 31, 1803390. doi:10.1002/adma.201803390
- Xu, Y.; Shi, C.; Liu, B.; Wang, T.; Zheng, J.; Li, W.; Dapeng, L.; Liu, X. Selective production of aromatics from CO2. Catalysis Science & Technology 2019, 9, 593–610. doi:10.1039/c8cy02024h
- Li, Z.; Qu, Y.; Wang, J.; Liu, H.; Li, M.; Miao, S.; Li, C. Highly Selective Conversion of Carbon Dioxide to Aromatics over Tandem Catalysts. Joule 2019, 3, 570–583. doi:10.1016/j.joule.2018.10.027
- Halder, A.; Kilianová, M.; Yang, B.; Tyo, E. C.; Seifert, S.; Prucek, R.; Panáček, A.; Suchomel, P.; Tomanec, O.; Gosztola, D. J.; Milde, D.; Wang, H.-H.; Kvítek, L.; Zbořil, R.; Vajda, S. Highly efficient Cu-decorated iron oxide nanocatalyst for low pressure CO2 conversion. Applied Catalysis B: Environmental 2018, 225, 128–138. doi:10.1016/j.apcatb.2017.11.047
- Jiang, F.; Liu, B.; Geng, S.; Xu, Y.; Liu, X. Hydrogenation of CO2 into hydrocarbons: Enhanced catalytic activity over Fe-based Fischer-Tropsch catalysts. Catalysis Science & Technology 2018, 8, 4097–4107. doi:10.1039/c8cy00850g
- McWilliams, B. T.; Wang, H.; Binns, V. J.; Curto, S.; Bossmann, S. H.; Prakash, P. Experimental Investigation of Magnetic Nanoparticle-Enhanced Microwave Hyperthermia. Journal of functional biomaterials 2017, 8, 21. doi:10.3390/jfb8030021
- Sp, A.; W, H.; Sy, A.; B, A.; C, J.; Xu, F.; W, D.; Hb, S. Statistically-Guided Optimization of the Catalysis of Cellulose Hydrolysis via Sulfamic Acid Functionalized Magnetic Iron/Iron(III) Oxide Core-Shell Nanoparticles. Nano Science and Nano Technology An Indian Journal 2017, 11.
- Yang, X.; Liu, J.; Fan, K.; Rong, L. Hydrocracking of Jatropha Oil over non-sulfided PTA-NiMo/ZSM-5 Catalyst. Scientific reports 2017, 7, 41654. doi:10.1038/srep41654
- He, R.; Wang, H.; Su, Y.; Chen, C.; Xie, L.; Chen, L.; Yu, J.; Toledo, Y.; Abayaweera, G.; Zhu, G.; Bossmann, S. H. Incorporating 131I into a PAMAM (G5.0) dendrimer-conjugate: design of a theranostic nanosensor for medullary thyroid carcinoma. RSC Advances 2017, 7, 16181–16188. doi:10.1039/c7ra00604g