Antimicrobial properties of CuO nanorods and multi-armed nanoparticles against B. anthracis vegetative cells and endospores

Pratibha Pandey, Merwyn S. Packiyaraj, Himangini Nigam, Gauri S. Agarwal, Beer Singh and Manoj K. Patra
Beilstein J. Nanotechnol. 2014, 5, 789–800. https://doi.org/10.3762/bjnano.5.91

Supporting Information

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 797.2 KB Download

Cite the Following Article

Antimicrobial properties of CuO nanorods and multi-armed nanoparticles against B. anthracis vegetative cells and endospores
Pratibha Pandey, Merwyn S. Packiyaraj, Himangini Nigam, Gauri S. Agarwal, Beer Singh and Manoj K. Patra
Beilstein J. Nanotechnol. 2014, 5, 789–800. https://doi.org/10.3762/bjnano.5.91

How to Cite

Pandey, P.; Packiyaraj, M. S.; Nigam, H.; Agarwal, G. S.; Singh, B.; Patra, M. K. Beilstein J. Nanotechnol. 2014, 5, 789–800. doi:10.3762/bjnano.5.91

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Omar, N. M. A.; Othman, M. H. D.; Tai, Z. S.; Heng, J. Y. Y.; Kurniawan, T. A.; Puteh, M. H.; Bakar, S. A.; Jaafar, J.; Rahman, M. A. A review of the latest progress in superhydrophobic surface technology using copper oxide nanoparticles. Journal of Materials Science 2024, 59, 19450–19491. doi:10.1007/s10853-024-10352-w
  • Habeeb, T.; Aljohani, M. S.; Kebeish, R.; Al-Badwy, A.; Bashal, A. H. Biogenic synthesis of CoO and ZnO nanoparticles using rosemary extract: Synergistic antimicrobial activity and insights from DFT simulations. Journal of Molecular Structure 2024, 1313, 138714. doi:10.1016/j.molstruc.2024.138714
  • Ahmad, V.; Ansari, M. O. Silver-decorated and graphene-wrapped MgO ternary composite (Ag–GN@MgO) for the potential inhibition of foodborne bacterial pathogens. Chemical Papers 2024, 78, 6563–6572. doi:10.1007/s11696-024-03555-7
  • Kalakonda, P.; Kathi, R.; Ligory, M. G.; Dabbeta, N.; Madipoju, N.; Mynepally, S.; Morampudi, V.; Banne, S.; Mandal, P.; Savu, R. N.; Khanam, S. J.; Banavoth, M.; Sudarsanam Eve, N. V.; Podila, B. B. Argyreia nervosa-driven biosynthesis of Cu-Ag bimetallic nanoparticles from plant leaves extract unveils enhanced antibacterial properties. Bioprocess and biosystems engineering 2024, 47, 1307–1319. doi:10.1007/s00449-024-03020-5
  • Kalakonda, P.; Kathi, R.; Ligory, M. G.; Dabbeta, N. K.; Madipoju, N. K.; Mynepally., S. L.; Morampudi, V.; Banne, S.; Mandal, P.; Savu, R. N.; Khanam, S. J.; Banavoth, M.; Eve, N. S.; Podila, B. B. Green Nanochemistry: Argyreia Nervosa-Assisted Synthesis of Cu-Ag Bimetallic Nanoparticles with Enhanced Antibacterial Properties. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-3628579/v1
  • Kalakonda, P.; Kathi, R.; GL, M.; Dabbeta, N. K.; Madipoju, N. K.; L, S. M.; Morampudi, V.; Banne, S.; Mandal, P.; Naidu, R.; Khanam, S. J.; Banavoth, M.; Eve, N. S.; Podila, B. B. Bio-Synthesis and Synergistic Effects of Cu-Ag Bimetallic Nanoparticles Using Argyreia Nervosa Leaf Extract for Antibacterial Applications. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-3345796/v1
  • Khalid, A.; Ahmad, P.; Uddin Khandaker, M.; Modafer, Y.; Almukhlifi, H. A.; Bazaid, A. S.; Aldarhami, A.; Alanazi, A. M.; Jefri, O. A.; Uddin, M. M.; Qanash, H. Biologically Reduced Zinc Oxide Nanosheets Using Phyllanthus emblica Plant Extract for Antibacterial and Dye Degradation Studies. Journal of Chemistry 2023, 2023, 1–10. doi:10.1155/2023/3971686
  • Li, X.; Cong, Y.; Ovais, M.; Cardoso, M. B.; Hameed, S.; Chen, R.; Chen, M.; Wang, L. Copper-based nanoparticles against microbial infections. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 2023, 15, e1888. doi:10.1002/wnan.1888
  • Asamoah, R. B.; Yaya, A.; Annan, E.; Nbelayim, P.; Kutsanedzie, F. Y. H.; Nyanor, P. K.; Asempah, I. Novel Cost-Effective Synthesis of Copper Oxide Nanostructures by The Influence of pH in the Wet Chemical Synthesis. Sustainable Education and Development – Sustainable Industrialization and Innovation; Springer International Publishing, 2023; pp 522–529. doi:10.1007/978-3-031-25998-2_40
  • Asmat-Campos, D.; de Oca-Vásquez, G. M.; Rojas-Jaimes, J.; Delfín-Narciso, D.; Juárez-Cortijo, L.; Nazario-Naveda, R.; Batista Menezes, D.; Pereira, R.; de la Cruz, M. S. Cu2O nanoparticles synthesized by green and chemical routes, and evaluation of their antibacterial and antifungal effect on functionalized textiles. Biotechnology reports (Amsterdam, Netherlands) 2023, 37, e00785. doi:10.1016/j.btre.2023.e00785
  • Ahmad, V.; Ansari, M. O. Synthesis, Characterization, and Evaluation of Antimicrobial Efficacy of Reduced Graphene-ZnO-Copper Nanocomplex. Antibiotics (Basel, Switzerland) 2023, 12, 246. doi:10.3390/antibiotics12020246
  • Fan, B.; Spindler, B. D.; Zhao, W.; Chan, H.; Wang, Z.; Kim, M.; Chipangura, Y.; Bühlmann, P.; Stein, A. Comparison of Copper(II) Oxide Nanostructures with Different Morphologies for Nonenzymatic Glucose Sensing. ACS Applied Nano Materials 2023, 6, 1475–1486. doi:10.1021/acsanm.2c05433
  • Gond, D. P.; Srivastava, A.; Subhashini; Sharma, A.; Mrinalini, K. Current and future prospects of nanoparticles to combat bacterial infections. Nanotechnology and Human Health; Elsevier, 2023; pp 49–73. doi:10.1016/b978-0-323-90750-7.00001-6
  • Rani, D.; Singh, R.; Kush, P.; Kumar, P. Nanomaterial-based smart coatings for antibacterial, antifungal, and antiviral activities. Advances in Nanotechnology for Marine Antifouling; Elsevier, 2023; pp 271–302. doi:10.1016/b978-0-323-91762-9.00008-3
  • Idriss, H.; M. Habib, M. H.; Alakhras, A. I.; El Khair, H. M. Nano-sized Metal Oxides and Their use as a Surface Disinfectant Against COVID-19: (Review and Perspective). Oriental Journal Of Chemistry 2022, 38, 1328–1337. doi:10.13005/ojc/380601
  • M. Kavitha, M. K.; K. Shenbagam, K. S.; Kanmani, R. Biogenic Synthesis of Copper oxide and Zinc oxide Nanoparticles using Catharanthus roseus L. flower extract and Evaluation of Its Antioxidant and Antibacterial Properties. Oriental Journal Of Chemistry 2022, 38, 1320–1327. doi:10.13005/ojc/380533
  • Zahoor, I.; Mir, J. F.; Shah, M. A. Advanced Nanomaterials for Infectious Diseases Therapeutics. Nanotechnology for Infectious Diseases; Springer Singapore, 2022; pp 85–102. doi:10.1007/978-981-16-9190-4_4
  • Gautam, Y. K.; Sharma, K.; Tyagi, S.; Kumar, A.; Singh, B. P. Applications of green nanomaterials in coatings. Green Nanomaterials for Industrial Applications; Elsevier, 2022; pp 107–152. doi:10.1016/b978-0-12-823296-5.00014-9
  • Rajwade, J.; Chikte, R.; Singh, N.; Paknikar, K. Copper-based nanostructures: Antimicrobial properties against agri-food pathogens. Copper Nanostructures: Next-Generation of Agrochemicals for Sustainable Agroecosystems; Elsevier, 2022; pp 477–503. doi:10.1016/b978-0-12-823833-2.00031-3
  • Pal, A.; Goswami, R.; Roy, D. N. A critical assessment on biochemical and molecular mechanisms of toxicity developed by emerging nanomaterials on important microbes. Environmental Nanotechnology, Monitoring & Management 2021, 16, 100485. doi:10.1016/j.enmm.2021.100485

Patents

  • JANG SE GYU; LIM HONG JIN; KIM MYUNG JONG; LEE HUN SU; AHN SEOKHOON; LEE SANG HYUN. Thermally reusable ultrafiltration membrane using boron nitride nano materials and method for fabrication and regeneration thereof. KR 20190042302 A, April 24, 2019.
Other Beilstein-Institut Open Science Activities