Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation

Dave Maharaj and Bharat Bhushan
Beilstein J. Nanotechnol. 2014, 5, 822–836. https://doi.org/10.3762/bjnano.5.94

Cite the Following Article

Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation
Dave Maharaj and Bharat Bhushan
Beilstein J. Nanotechnol. 2014, 5, 822–836. https://doi.org/10.3762/bjnano.5.94

How to Cite

Maharaj, D.; Bhushan, B. Beilstein J. Nanotechnol. 2014, 5, 822–836. doi:10.3762/bjnano.5.94

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Sethi, J.; Das, K.; Das, S. Effect of Indentation Load or Depth on Hardness and Elastic Modulus of Aluminium Matrix Hybrid Composite by Using Both Nano and Micro Indentation Techniques. Elsevier BV 2024. doi:10.2139/ssrn.4820596
  • Thummavichai, K.; Chen, Y.; Wang, N. N.; Zhu, Y. Q.; Ola, O. Synthesis, Properties and Characterization of Metal Nanoparticles. Nanoparticles Reinforced Metal Nanocomposites; Springer Nature Singapore, 2023; pp 161–207. doi:10.1007/978-981-19-9729-7_6
  • Park, S.; Nam, H.; Lee, Y.; Park, N.; Hong, S.; Na, Y.; Park, C.; Kang, N. Enhancement of Hardness and Yield Strength Induced by Cu-Rich Phase and Its Effect at Cryogenic Temperature on Gas Tungsten Arc Welds of Ferrous Medium-Entropy Alloy. Metals and Materials International 2023, 29, 2316–2330. doi:10.1007/s12540-022-01376-5
  • Roa, S.; Sirena, M.; Redondo, C.; Morales, R. AFM nanoindentation-based mechanical investigation of 3D confinement effects on nanoarchitectonic arrays of Ag nanodisks. Journal of Physics and Chemistry of Solids 2022, 163, 110605. doi:10.1016/j.jpcs.2022.110605
  • Qu, J.; Liu, X. Recent Advances on SEM-Based In Situ Multiphysical Characterization of Nanomaterials. Scanning 2021, 2021, 4426254. doi:10.1155/2021/4426254
  • Moradi, S.; Johrmann, N.; Karnaushenko, D. D.; Zschenderlein, U.; Karnaushenko, D.; Wunderle, B.; Schmidt, O. G. Mechanical Characterization of Compact Rolled-up Microtubes Using In Situ Scanning Electron Microscopy Nanoindentation and Finite Element Analysis. Advanced Engineering Materials 2021, 23, 2170031. doi:10.1002/adem.202100412
  • Shokouhimehr, M.; Theus, A. S.; Kamalakar, A.; Ning, L.; Cao, C.; Tomov, M. L.; Kaiser, J.; Goudy, S. L.; Willett, N. J.; Jang, H. W.; LaRock, C. N.; Hanna, P. C.; Lechtig, A.; Yousef, M.; Martins, J. S.; Nazarian, A.; Harris, M. B.; Mahmoudi, M.; Serpooshan, V. 3D Bioprinted Bacteriostatic Hyperelastic Bone Scaffold for Damage-Specific Bone Regeneration. Polymers 2021, 13, 1099. doi:10.3390/polym13071099
  • Roa, S.; Sirena, M.; Redondo, C.; Morales, R. Effects of 3-D Confinement on the Mechanical Behavior of Ag Nanodisks: Novel Insights into Nanomaterials Mechanics. SSRN Electronic Journal 2021. doi:10.2139/ssrn.3968010
  • Alsharif, N.; Eshaghi, B.; Reinhard, B. M.; Brown, K. A. Physiologically Relevant Mechanics of Biodegradable Polyester Nanoparticles. Nano letters 2020, 20, 7536–7542. doi:10.1021/acs.nanolett.0c03004
  • Souto, J.; Pura, J. L.; Jiménez, J. Thermomechanical issues of high power laser diode catastrophic optical damage. Journal of Physics D: Applied Physics 2019, 52, 343002. doi:10.1088/1361-6463/ab243f
  • Sun, L.; Riedel, R.; Stanciu, S. G.; Yang, F.; Hampp, N.; Xu, L.; Wu, A. Investigations on the elasticity of functional gold nanoparticles using single-molecule force spectroscopy. Journal of materials chemistry. B 2018, 6, 2960–2971. doi:10.1039/c7tb03309e
  • Ko, S.-D.; Seo, M.-H.; Yoon, Y.-H.; Han, C.-H.; Lim, K.-S.; Kim, C.-K.; Yoon, J.-B. Investigation of the Nanoparticle Electrical Contact Lubrication in MEMS Switches. Journal of Microelectromechanical Systems 2017, 26, 1417–1427. doi:10.1109/jmems.2017.2761811
  • Zhang, W.; Patel, K.; Ren, S. Exfoliated BN shell-based high-frequency magnetic core-shell materials. Nanoscale 2017, 9, 13203–13208. doi:10.1039/c7nr03801a
  • Yang, L.; Bian, J.; Wang, G.-F. Impact of atomic-scale surface morphology on the size-dependent yield stress of gold nanoparticles. Journal of Physics D: Applied Physics 2017, 50, 245302. doi:10.1088/1361-6463/aa7096
  • Souto, J.; Pura, J. L.; Jiménez, J. Nanoscale effects on the thermal and mechanical properties of AlGaAs/GaAs quantum well laser diodes: influence on the catastrophic optical damage. Journal of Physics D: Applied Physics 2017, 50, 235101. doi:10.1088/1361-6463/aa6fbd
  • Bhardwaj, V.; Chowdhury, R.; Jayaganthan, R. Adhesion strength and nanomechanical characterization of ZnO thin films. Journal of Materials Research 2017, 32, 1432–1443. doi:10.1557/jmr.2017.85
  • Bhushan, B. Nanotribology and Nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS Materials and Devices. Nanotribology and Nanomechanics; Springer International Publishing, 2017; pp 797–907. doi:10.1007/978-3-319-51433-8_16
  • Decuzzi, P.; Coclite, A.; Lee, A.; Palange, A. L.; Di Mascolo, D.; Chiappini, C.; Santos, H. A.; Coluccio, M. L.; Perozziello, G.; Candeloro, P.; Di Fabrizio, E.; Gentile, F. Nano-particles for biomedical applications. Springer Handbooks; Springer Berlin Heidelberg, 2017; pp 643–691. doi:10.1007/978-3-662-54357-3_21
  • Moeinzadeh, S.; Jabbari, E. Nanoparticles and Their Applications. Springer Handbooks; Springer Berlin Heidelberg, 2017; pp 335–361. doi:10.1007/978-3-662-54357-3_11
  • Bhushan, B. MEMS/NEMS and BioMEMS/BioNEMS: Tribology, Mechanics, Materials and Devices. Springer Handbooks; Springer Berlin Heidelberg, 2017; pp 1331–1416. doi:10.1007/978-3-662-54357-3_38
Other Beilstein-Institut Open Science Activities