Volcano plots in hydrogen electrocatalysis – uses and abuses

Paola Quaino, Fernanda Juarez, Elizabeth Santos and Wolfgang Schmickler
Beilstein J. Nanotechnol. 2014, 5, 846–854. https://doi.org/10.3762/bjnano.5.96

Cite the Following Article

Volcano plots in hydrogen electrocatalysis – uses and abuses
Paola Quaino, Fernanda Juarez, Elizabeth Santos and Wolfgang Schmickler
Beilstein J. Nanotechnol. 2014, 5, 846–854. https://doi.org/10.3762/bjnano.5.96

How to Cite

Quaino, P.; Juarez, F.; Santos, E.; Schmickler, W. Beilstein J. Nanotechnol. 2014, 5, 846–854. doi:10.3762/bjnano.5.96

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Hung, C.-C.; Liu, H.-Y.; Huang, Y.-M.; Lin, S.-C.; Yang, T.-H. Replacing Pd with Ag Nanocatalysts To Mitigate Hydrogen Embrittlement and Enhance Peel Strength in Industrial-Scale Electroless Cu Deposition on Surface-Modified Substrates. ACS Applied Nano Materials 2025. doi:10.1021/acsanm.5c00486
  • Gisbert-González, J. M.; Rodellar, C. G.; Druce, J.; Ortega, E.; Cuenya, B. R.; Oener, S. Z. Bias Dependence of the Transition State of the Hydrogen Evolution Reaction. Journal of the American Chemical Society 2025, 147, 5472–5485. doi:10.1021/jacs.4c18638
  • Centi, G.; Perathoner, S. Addressing the Complexity of Bridging Thermal and Reactive Catalysis. The Role of Strong Localised Electrical Fields. Topics in Catalysis 2025. doi:10.1007/s11244-025-02062-7
  • Kapdos, Á.; Ujvári, M.; Kovács, N.; Szakály, Z.; Busai, Á.; Sólyom, P.; Grozovski, V.; Moreno-García, P.; Broekmann, P.; Vesztergom, S. Modelling the chronopotentiometric response of constant current hydrogen evolution from dilute solutions of strong acids. Journal of Catalysis 2025, 442, 115872. doi:10.1016/j.jcat.2024.115872
  • Xie, J.; Wang, J.; Shu, Y.; Yang, J.; Li, Y.; Dong, H. Superior electro-catalytic performance achieved by the negatively charged boron atom on BC3/TM/graphene sandwich heterostructures. Journal of Materials Science & Technology 2025, 207, 255–265. doi:10.1016/j.jmst.2024.03.078
  • Kuznetsov, V.; Podlovchenko, B.; Khanin, D.; Zhulikov, V.; Cherkasov, D. Preparation of Pd(Mo2C) composites by palladium deposition under open-circuit conditions, their corrosion resistance and catalytic activity. Journal of Electroanalytical Chemistry 2025, 979, 118913. doi:10.1016/j.jelechem.2024.118913
  • Nuñez, J. L.; Colombo, E.; Tranca, I.; Bazin, D.; Quaino, P.; Tielens, F. Understanding the atomistic behavior of small molecules (O2 and N2) on monometallic M13 nanoparticles. Catalysis Today 2025, 445, 115051. doi:10.1016/j.cattod.2024.115051
  • KC, B. R.; Kumar, D.; Bastakoti, B. P. Enhancing electrocatalytic performance of RuO2-based catalysts: mechanistic insights, strategic approaches, and recent advances. Journal of Physics: Energy 2025, 7, 22001. doi:10.1088/2515-7655/adad9f
  • Fairhurst, A. R.; Snyder, J.; Wang, C.; Strmcnik, D.; Stamenkovic, V. R. Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces. Chemical reviews 2025, 125, 1332–1419. doi:10.1021/acs.chemrev.4c00133
  • Chua, K. O.; Jackson, M. N. Step Edge Defects Have Nanoscale Impact on the Electronic Structure in Semiconducting Transition Metal Dichalcogenide Electrocatalysts. Journal of the American Chemical Society 2025, 147, 4643–4653. doi:10.1021/jacs.4c17263
  • Cho, S. C.; Seok, J. H.; Manh, H. N.; Seol, J. H.; Lee, C. H.; Lee, S. U. Expanding the frontiers of electrocatalysis: advanced theoretical methods for water splitting. Nano convergence 2025, 12, 4. doi:10.1186/s40580-024-00467-w
  • Wang, J.; Xu, Y.; Wei, A.; Reinhold, J. S.; Wei, L.; Shi, L.; Zhang, Y.; Wang, C.; Zhang, B.; Liu, S. The volcanic relationship of model phthalocyanine molecular catalysts in the CO2 reduction reaction. Physical chemistry chemical physics : PCCP 2025, 27, 1784–1788. doi:10.1039/d4cp03912b
  • Oliveira, M. L. M.; Alves, C. M. A. C.; Andrade, C. F.; de Azevedo, D. C. S.; Lobo, F. L.; Fuerte, A.; Ferreira-Aparicio, P.; Caravaca, C.; Valenzuela, R. X. Recent Progress and Perspectives on Functional Materials and Technologies for Renewable Hydrogen Production. ACS omega 2025, 10, 3282–3303. doi:10.1021/acsomega.4c10407
  • Heinius, L.; Klingenhof, M.; Weiser, G.; Schröer, P.; Metzler, L.; Koch, S.; Selve, S.; Vierrath, S.; Strasser, P. Design and Analysis of Carbon‐Supported NiMo HER Catalysts and Electrodes for High Performance All PGM‐Free AEM Electrolysers. Electrochemical Science Advances 2025. doi:10.1002/elsa.202400027
  • Liu, H.; Xiong, R.; Ma, S.; Wang, R.; Liu, Z.; Yao, T.; Song, B. Recent advances in noble-metal-free bifunctional oxygen electrode catalysts. Energy Advances 2025, 4, 55–83. doi:10.1039/d4ya00551a
  • Yamauchi, K.; Kawano, K.; Yatsuzuka, K.; Kawamura, K.; Kan, M.; Sakai, K. Viologen-Radical-Driven Hydrogen Evolution from Water Catalyzed by Co-NHC Catalysts: Radical Scavenging by Nitrate and Volmer-Heyrovsky-like CPET Pathway. Journal of the American Chemical Society 2025, 147, 5602–5614. doi:10.1021/jacs.4c10246
  • Suszko, T.; Dobruchowska, E.; Gulbiński, W.; Greczynski, G.; Morgiel, J.; Kawczyński, B.; Załȩski, K.; Dorywalski, K.; Pogorzelski, S. NiMo-C Coatings Synthesized by Reactive Magnetron Sputtering for Application as a Catalyst for the Hydrogen Evolution Reaction in an Acidic Environment. ACS applied materials & interfaces 2025, 17, 3344–3355. doi:10.1021/acsami.4c17743
  • Hu, G.; Hogan, T. P.; Nicholas, J. D. Porous Interlayers that Getter Surface-Segregating Species for Improved Silver Wetting, Adhesion, and Electrical Contact on Stainless Steel SOFC Components. Journal of The Electrochemical Society 2025, 172, 14513. doi:10.1149/1945-7111/adad48
  • Gökçe Altınçekiç, N.; Alexander Achemire, M.; Noh, H. Crystal-size-dependent Optical Properties of H-atoms on the Nodes of Ti-based Metal-organic Framework. Chemistry, an Asian journal 2024, e202401055. doi:10.1002/asia.202401055
  • Thomas, S.; Mathew, M.; Priyanka, K. P.; Babu, D. D. MoS2 for Hydrogen Evolution Reaction. Materials Horizons: From Nature to Nanomaterials; Springer Nature Singapore, 2024; pp 231–255. doi:10.1007/978-981-97-7367-1_13

Patents

  • FELSER CLAUDIA; SUN YAN. METHOD FOR EVALUATING A CATALYST. EP 3798333 A1, March 31, 2021.
Other Beilstein-Institut Open Science Activities