Cite the Following Article
From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries
Philipp Adelhelm, Pascal Hartmann, Conrad L. Bender, Martin Busche, Christine Eufinger and Juergen Janek
Beilstein J. Nanotechnol. 2015, 6, 1016–1055.
https://doi.org/10.3762/bjnano.6.105
How to Cite
Adelhelm, P.; Hartmann, P.; Bender, C. L.; Busche, M.; Eufinger, C.; Janek, J. Beilstein J. Nanotechnol. 2015, 6, 1016–1055. doi:10.3762/bjnano.6.105
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Ali, Z.; Shafqat, M. B.; Ahsan, M. T.; Ali, M.; Saeed, A.; Hussain, R.; Noor, T.; Javed, S. A multichambered carbon based electrode materials to realize efficient sodium-ion batteries. Journal of Energy Storage 2025, 106, 114804. doi:10.1016/j.est.2024.114804
- Hasa, I.; Barker, J.; Elia, G.; Passerini, S. Battery Types – Sodium Batteries – Low-Temperature Sodium Batteries | Overview. Encyclopedia of Electrochemical Power Sources; Elsevier, 2025; pp 767–784. doi:10.1016/b978-0-323-96022-9.00061-x
- Sanjaykumar, C.; Sungjemmenla; Chandra, M.; Soni, C. B.; Vineeth, S. K.; Das, S.; Cohen, N.; Kumar, H.; Mandler, D.; Kumar, V. Tuning the local chemistry of SPAN to realize the development of room-temperature sodium–sulfur pouch cells. Journal of Materials Chemistry A 2025. doi:10.1039/d4ta05581k
- Oulbaz, L.; Kasbaji, M.; Oubenali, M.; Moubarik, A.; Kassab, Z.; Chari, A.; Dahbi, M.; El Achaby, M. What is the potential of walnut shell-derived carbon in battery applications?. Nanoscale 2024, 17, 113–141. doi:10.1039/d4nr03460k
- Majid, M.; J, C. R. K.; Ahmed, A. Advances in electric vehicles for a self-reliant energy ecosystem and powering a sustainable future in India. e-Prime - Advances in Electrical Engineering, Electronics and Energy 2024, 10, 100753. doi:10.1016/j.prime.2024.100753
- Mei, T.; Li, X.; Lin, X.; Bai, L.; Xu, M.; Qi, Y. Cobalt Catalytic Regulation Engineering in Room‐Temperature Sodium–Sulfur Batteries: Facilitating Rapid Polysulfides Conversion and Delicate Na2S Nucleation. Advanced Functional Materials 2024. doi:10.1002/adfm.202418126
- Liu, S.; Chen, J.; Wang, Y.; Hou, J.; Duan, Q. Theoretical prediction of two-dimensional metallic AM2B8 (AM = K, Rb, Cs) as anode materials for Na-ion batteries. Materials Today Communications 2024, 41, 110284. doi:10.1016/j.mtcomm.2024.110284
- Ji, T.; Tu, Q.; Zhao, Y.; Wierzbicki, D.; Plisson, V.; Wang, Y.; Wang, J.; Burch, K. S.; Yang, Y.; Zhu, H. Three-step thermodynamic vs. two-step kinetics-limited sulfur reactions in all-solid-state sodium batteries. Energy & Environmental Science 2024, 17, 9255–9267. doi:10.1039/d4ee03160a
- Alemu, M. A.; Zegeye Getie, M.; Mulugeta Wassie, H.; Shitye Alem, M.; Assegie, A. A.; llbaş, M.; Al Afif, R. Biomass-derived metal-free heteroatom doped nanostructured carbon electrocatalysts for high-performance rechargeable lithium–air batteries. Green Chemistry 2024, 26, 11427–11443. doi:10.1039/d4gc02551b
- McCrystall, M.; Gabbett, C.; Kaur, H.; Carey, T.; Munera, J.; Gannon, L.; Mc Guinness, C.; Nicolosi, V.; Coleman, J. N.; Konkena, B. Liquid Processed Nano As4S4/SWCNTs Composite Electrodes for High-Performance Li-Ion and Na-Ion Battery Anodes. Energy & fuels : an American Chemical Society journal 2024, 38, 21521–21534. doi:10.1021/acs.energyfuels.4c03525
- Wanison, R.; Syahputra, W. N. H.; Kammuang-lue, N.; Sakulchangsatjatai, P.; Chaichana, C.; Shankar, V. U.; Suttakul, P.; Mona, Y. Engineering aspects of sodium-ion battery: An alternative energy device for Lithium-ion batteries. Journal of Energy Storage 2024, 100, 113497. doi:10.1016/j.est.2024.113497
- Safdar, T.; Huang, C. Sulfur/carbon cathode material chemistry and morphology optimisation for lithium-sulfur batteries. RSC advances 2024, 14, 30743–30755. doi:10.1039/d4ra04740k
- Yusuf, M.; Kurzina, I.; Voronova, G.; Islam, M. M.; Mohammed, S. D.; Oladoja, N. A. Trends in the energy and environmental applications of metal–organic framework-based materials. Energy Advances 2024, 3, 2079–2135. doi:10.1039/d4ya00332b
- El Haloui, E. H.; Rkhis, M.; Hariti, N.; Hairch, Y.; Belhora, F.; Laasri, S.; Hlil, E.-K.; Hajjaji, A. First-principles study of olivine AFePO4 (A = Li, Na) as a positive electrode for lithium-ion and sodium-ion batteries. Euro-Mediterranean Journal for Environmental Integration 2024. doi:10.1007/s41207-024-00639-4
- Li, H.; Qv, H. doi:10.1002/9783527845316.ch4
- Zhu, H.; Ji, T.; Tu, Q.; Zhao, Y.; Wierzbicki, D.; Plisson, V.; Wang, Y.; Wang, J.; Burch, K.; Yang, Y. Three-Step Thermodynamic vs. Two-Step Kinetic-Limited Sulfur Reactions in All-Solid-State Sodium Batteries. Springer Science and Business Media LLC 2024. doi:10.21203/rs.3.rs-4727118/v1
- Nekahi, A.; Dorri, M.; Rezaei, M.; Bouguern, M. D.; Madikere Raghunatha Reddy, A. K.; Li, X.; Deng, S.; Zaghib, K. Comparative Issues of Metal-Ion Batteries toward Sustainable Energy Storage: Lithium vs. Sodium. Batteries 2024, 10, 279. doi:10.3390/batteries10080279
- Qiu, J.; Wang, D.; Hwang, J.; Matsumoto, K.; Hagiwara, R. Dendrite-free Na deposition: Effects of the Na metal state on the deposition/dissolution performance on β"-alumina solid electrolyte interface. Journal of Power Sources 2024, 612, 234777. doi:10.1016/j.jpowsour.2024.234777
- Singla, A.; Naik, K. G.; Vishnugopi, B. S.; Mukherjee, P. P. Heterogeneous Solid Electrolyte Interphase Interactions Dictate Interface Instability in Sodium Metal Electrodes. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2024, 11, e2404887. doi:10.1002/advs.202404887
- Srivastava, M.; M. R., A. K.; Zaghib, K. Binders for Li-Ion Battery Technologies and Beyond: A Comprehensive Review. Batteries 2024, 10, 268. doi:10.3390/batteries10080268