From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

Philipp Adelhelm, Pascal Hartmann, Conrad L. Bender, Martin Busche, Christine Eufinger and Juergen Janek
Beilstein J. Nanotechnol. 2015, 6, 1016–1055. https://doi.org/10.3762/bjnano.6.105

Cite the Following Article

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries
Philipp Adelhelm, Pascal Hartmann, Conrad L. Bender, Martin Busche, Christine Eufinger and Juergen Janek
Beilstein J. Nanotechnol. 2015, 6, 1016–1055. https://doi.org/10.3762/bjnano.6.105

How to Cite

Adelhelm, P.; Hartmann, P.; Bender, C. L.; Busche, M.; Eufinger, C.; Janek, J. Beilstein J. Nanotechnol. 2015, 6, 1016–1055. doi:10.3762/bjnano.6.105

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • McCrystall, M.; Gabbett, C.; Kaur, H.; Carey, T.; Munera, J.; Gannon, L.; Mc Guinness, C.; Nicolosi, V.; Coleman, J. N.; Konkena, B. Liquid Processed Nano As4S4/SWCNTs Composite Electrodes for High-Performance Li-Ion and Na-Ion Battery Anodes. Energy & Fuels 2024. doi:10.1021/acs.energyfuels.4c03525
  • Wanison, R.; Syahputra, W. N. H.; Kammuang-lue, N.; Sakulchangsatjatai, P.; Chaichana, C.; Shankar, V. U.; Suttakul, P.; Mona, Y. Engineering aspects of sodium-ion battery: An alternative energy device for Lithium-ion batteries. Journal of Energy Storage 2024, 100, 113497. doi:10.1016/j.est.2024.113497
  • Safdar, T.; Huang, C. Sulfur/carbon cathode material chemistry and morphology optimisation for lithium-sulfur batteries. RSC advances 2024, 14, 30743–30755. doi:10.1039/d4ra04740k
  • Yusuf, M.; Kurzina, I.; Voronova, G.; Islam, M. M.; Mohammed, S. D.; Oladoja, N. A. Trends in the energy and environmental applications of metal–organic framework-based materials. Energy Advances 2024, 3, 2079–2135. doi:10.1039/d4ya00332b
  • El Haloui, E. H.; Rkhis, M.; Hariti, N.; Hairch, Y.; Belhora, F.; Laasri, S.; Hlil, E.-K.; Hajjaji, A. First-principles study of olivine AFePO4 (A = Li, Na) as a positive electrode for lithium-ion and sodium-ion batteries. Euro-Mediterranean Journal for Environmental Integration 2024. doi:10.1007/s41207-024-00639-4
  • Majid, M.; J, C. R. K.; Ahmed, A. Advances in electric vehicles for a self-reliant energy ecosystem and powering a sustainable future in India. e-Prime - Advances in Electrical Engineering, Electronics and Energy 2024, 10, 100753. doi:10.1016/j.prime.2024.100753
  • Liu, S.; Chen, J.; Wang, Y.; Hou, J.; Duan, Q. Theoretical prediction of two-dimensional metallic AM2B8 (AM = K, Rb, Cs) as anode materials for Na-ion batteries. Materials Today Communications 2024, 41, 110284. doi:10.1016/j.mtcomm.2024.110284
  • Zhu, H.; Ji, T.; Tu, Q.; Zhao, Y.; Wierzbicki, D.; Plisson, V.; Wang, Y.; Wang, J.; Burch, K.; Yang, Y. Three-Step Thermodynamic vs. Two-Step Kinetic-Limited Sulfur Reactions in All-Solid-State Sodium Batteries. Springer Science and Business Media LLC 2024. doi:10.21203/rs.3.rs-4727118/v1
  • Nekahi, A.; Dorri, M.; Rezaei, M.; Bouguern, M. D.; Madikere Raghunatha Reddy, A. K.; Li, X.; Deng, S.; Zaghib, K. Comparative Issues of Metal-Ion Batteries toward Sustainable Energy Storage: Lithium vs. Sodium. Batteries 2024, 10, 279. doi:10.3390/batteries10080279
  • Qiu, J.; Wang, D.; Hwang, J.; Matsumoto, K.; Hagiwara, R. Dendrite-free Na deposition: Effects of the Na metal state on the deposition/dissolution performance on β"-alumina solid electrolyte interface. Journal of Power Sources 2024, 612, 234777. doi:10.1016/j.jpowsour.2024.234777
  • Singla, A.; Naik, K. G.; Vishnugopi, B. S.; Mukherjee, P. P. Heterogeneous Solid Electrolyte Interphase Interactions Dictate Interface Instability in Sodium Metal Electrodes. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2024, 11, e2404887. doi:10.1002/advs.202404887
  • Srivastava, M.; M. R., A. K.; Zaghib, K. Binders for Li-Ion Battery Technologies and Beyond: A Comprehensive Review. Batteries 2024, 10, 268. doi:10.3390/batteries10080268
  • Zhao, J.; Xiao, Y.; Liu, Q.; Wu, J.; Jiang, Z.; Zeng, H. The Rise of Multivalent Metal–Sulfur Batteries: Advances, Challenges, and Opportunities. Advanced Functional Materials 2024. doi:10.1002/adfm.202405358
  • Kumar, A. A comprehensive review of an electric vehicle based on the existing technologies and challenges. Energy Storage 2024, 6. doi:10.1002/est2.70000
  • Shao, J.; Huang, C.; Zhu, Q.; Sun, N.; Zhang, J.; Wang, R.; Chen, Y.; Zhang, Z. Flexible CNT-Interpenetrating Hierarchically Porous Sulfurized Polyacrylonitrile (CIHP-SPAN) Electrodes for High-Rate Lithium-Sulfur (Li-S) Batteries. Nanomaterials (Basel, Switzerland) 2024, 14, 1155. doi:10.3390/nano14131155
  • Payel Bhattacharya; Anirbit Bhattacharya. Analysis and Review of Graphene based Super-Capacitor and its Fast Charging in application of Electric Vehicle. International Journal of Advanced Research in Science, Communication and Technology 2024, 480–485. doi:10.48175/ijarsct-18951
  • Geisler, J.; Pfeiffer, L.; A. Ferrero, G.; Axmann, P.; Adelhelm, P. Setup Design and Data Evaluation for DEMS in Sodium Ion Batteries, Demonstrated on a Mn‐Rich Cathode Material. Batteries & Supercaps 2024, 7. doi:10.1002/batt.202400006
  • Siwiec, D.; Frącz, W.; Pacana, A.; Janowski, G.; Bąk, Ł. Analysis of the Ecological Footprint from the Extraction and Processing of Materials in the LCA Phase of Lithium-Ion Batteries. Sustainability 2024, 16, 5005. doi:10.3390/su16125005
  • Soomro, I. A.; Lakhan, M. N.; Hanan, A.; Almujibah, H.; Hussain, A.; Pato, A. H.; Ahmed, M.; Chandio, I. A.; Memon, S. A.; Umer, M.; Bibi, F.; Lei, M. 2D MXenes as electrode materials for metal-sulfur batteries: A review. Materials Today Physics 2024, 45, 101453. doi:10.1016/j.mtphys.2024.101453
  • Nguyen, H.; Wei, S. Recent Progress of Gel Polymer Electrolytes for Sodium Sulfur Batteries. ACS Applied Electronic Materials 2024. doi:10.1021/acsaelm.3c01841
Other Beilstein-Institut Open Science Activities