Abstract
Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM) by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes.
Introduction
The atomic force microscope is a versatile and powerful tool for imaging, compositional mapping and modification of surfaces with atomic and nanoscale spatial resolutions [1-8]. The evolution of AFM is being shaped by the need to provide images of heterogeneous surfaces with high spatial resolution combined with compositional contrast and/or material properties mapping [7,9]. Amplitude modulation force microscopy (AM-AFM) was designed to excite the cantilever near or at its fundamental free resonant frequency [2]. However, the need to improve and/or provide quantitative compositional contrast without compromising the data acquisition speed has led to the development of several AFM modes, specifically multifrequency force microscopy methods [9-32].
Bimodal force microscopy is a multifrequency AFM method that uses two eigenmode frequencies for excitation and detection (Figure 1) [9]. It has several configurations depending on the feedback schemes [16-24]. In the first bimodal AFM configuration (bimodal AM) [15,16], the feedback acts on the amplitude of the first mode by keeping it at a fixed value during imaging while the second mode operates in an open loop. The ability of bimodal AM to map compositional variations under the influence of conservative forces is a main advantage with respect to AFM phase imaging (tapping mode AFM), where the phase contrast is related to variations in energy dissipation [33].
In AM-AFM there are two interacting regimes, attractive and repulsive [2]. The regimes are defined by the average value of the force [34]. A transition between the regimes is usually accompanied by a sudden change of the observables (amplitude and phase shift). In bimodal AFM some additional contrast regimes has been identified [35-37] where sudden changes of the phase contrast are not associated with changes in the sign of the average value of the force. The origin of those regimes are discussed in terms of the different energies of the system, kinetic energy of the exited modes [35-38], the input energy [36] or the energy transfer between the modes [37]. In general those regimes appear when the modes are highly coupled. This happens when the energy of the first and second mode are comparable [35].
This context has also stimulated other multifrequency AFM variations such as trimodal AFM [39-41]. In trimodal AFM the first three flexural modes are excited and detected. The feedback operates on the amplitude of the first mode while both second and third modes are in open loops. It has been shown the usefulness of the third mode to modulate the indentation [23]. A comparison of the trade-offs in sensitivity and sample depth have been performed with bimodal and trimodal AFM in the repulsive regime [41]. However, a similar comparison has not been reported for the attractive interaction regime.
In bimodal AFM (Figure 1), the advances in instrumentation are ahead of its theoretical understanding. To bridge the gap between experiments and theory we study the conditions to optimize the compositional contrast and material properties sensitivity in bimodal AM. The compositional contrast is usually defined as the phase shift difference of the second mode between two regions of the surface of a heterogeneous material. We study the phase contrast as a function of the amplitude ratio, the amplitude values of the second mode and the kinetic energy ratios of the excited modes. We also study the phase contrast between different materials by including energy dissipation in the tip–sample interaction, by inverting the roles of the excited modes (indirect bimodal AM) as well as in trimodal AFM. In the latter, the phase contrast is maximized when the energy of the second mode is much smaller than the other excited modes.
Results and Discussion
Equation of motion and tip–surface forces
To analyze the dependence of the phase contrast on the values of the different parameters we have used numerical simulations. For this we consider that bimodal AFM is characterized by the simultaneous excitation of two cantilever resonant frequencies, usually the lowest flexural eigenmodes [42]. The total driving force is expressed as
Then, the cantilever–tip ensemble will be described by the system of two differential modal equations,
with i = 1,2; ωi, ki, Qi, , Ai and A0i are, respectively, the angular frequency, the force constant, quality factor, phase shift, amplitude and free amplitude of mode i; m = 0.25mc is an effective mass while mc is the real cantilever–tip mass. The solution of the above equation has two components z1 and z2 that vibrate, respectively, with the eigenmode frequencies ω1 and ω2. The instantaneous tip–surface distance d is defined by
where z0 and zc are respectively, the average tip deflection and the average tip–surface separation. The tip–surface force is modelled by Equation 6 where a0 is a molecular distance (0.165 nm).
Material and cantilever–tip parameters
To study the phase contrast we have simulated the bimodal AM operation for two materials gold (Au) and polystyrene (PS). The values of the material properties needed to describe the tip–surface force (Hamaker constant and Young modulus) and the operational values of the microscope are summarized in Table 1 and Table 2.
For trimodal AFM simulations we have used the parameters shown in Table 3. To minimize some complex non-linear dynamic effects we restrict our study to situations that involve the attractive regime. The attractive forces have been modeled by van der Waals interactions with the Hamaker values given in Table 1.
Phase contrast in the attractive regime (conservative force): A01 > A02
In bimodal AM the feedback loop operates on A1, consequently the amplitude of the first mode or its ratio is the relevant parameter to be used as the independent variable. In some cases, the representation with respect to the average tip–surface distance could also provide useful information.
The dependence of with A1/A01 has been described previously [15,16]. In the attractive regime, it shows an increase with A1/A01 decreasing (A01 = 10 nm). The fastest changes happen at the edges of the x-axis (small and large amplitude ratios). This behavior is reproduced for gold (Figure 2a) and PS (Figure 2b) for different values of A02. Interestingly, for the same zc the phase shift is larger for the material with the smaller Hamaker value. This is at odds what happens in amplitude modulation AFM, where the phase shifts increases with the value of H.
The phase contrast │Δ│=│ (gold) − (PS)│ depends on both the A1/A01-ratio and the value of A02. Two maxima are observed, one with respect to A1/A01 and the other with respect to A02. The first maximum happens near an A1/A01-ratio of about 0.5. It seems similar to the behavior observed in AM-AFM for the dependence of the minimum distance with A1/A01 [43]. In terms of optimizing the material contrast it is more relevant to pay attention to the behavior with respect to A02 (Figure 2d). It shows the phase contrast for A01/A02 ratios between 5 and 2000. Small values of A02 are needed to enhance the material contrast, however, for very small A02 the bimodal enhancement of contrast will disappear as the system becomes monomodal, i.e., tapping mode AFM. For this simulation the best contrast is yielded for an amplitude ratio of 250. This value is significantly larger than the values previously recommended (10–50) which were based on experiments [43-45].
Phase contrast in the attractive regime (dissipation): A01 > A02
To study the effect of energy dissipation in the bimodal phase contrast, in addition the above conservative force, we introduce the following non-conservative interaction [47]:
The power dissipated in the sample for each mode is calculated by [47]
Figure 3a,b show the dependence of versus A1/A01 when the tip–sample interaction includes non-conservative interactions. The phase shift increases by reducing the A1/A01-ratio until a maximum is reached for ratios below 0.2. This behavior is reproduced for both gold and PS and for different A02 values. The increase of the phase shift by increasing the value of A02 is in agreement with experimental observations [36]. The presence of dissipation reduces the phase shift for the same A1/A01-ratio (see Figure 2). Energy dissipation in the sample softens the resonance curves which in turns reduces the phase shift. This is a common feature of resonators that is not affected by bimodal excitation. The phase contrast │Δ│=│ (gold) − (PS)│ also shows a maximum with respect to A1/A01. The behavior is very similar to the one observed for conservative interactions (Figure 2c) except for A02 ≥ 1 nm where the maximum is displaced to very small amplitude ratios. This is due to the cross-over in the amount of power dissipated between Au and PS for those amplitude ratios (see below). In general, the introduction of dissipation processes in the tip–sample interaction reduces the material contrast observed in the phase shift of the 2nd mode (Figure 3d). This is in contrast with phase imaging in amplitude modulation AFM, where the contrast is related to energy dissipation processes. It shows that the phase contrast in bimodal AM is dominated by conservative forces [42,47]. The presence of dissipation also modifies the conditions to maximize the phase contrast to smaller A01/A02 values (20 versus 250 (no dissipation)).
To clarify the dependence of the phase contrast with the power dissipated by the tip–sample interaction we plot the dissipated power as a function of A1/A01 for different materials. Figure 4a and 4b show, respectively, the total dissipated power for Au and PS. The dissipated power increases with the free amplitude of the 2nd mode and it has a maximum with respect to A1/A01. This maximum is related to the existence of a minimum in the closest tip–surface separation as a function of A1/A01. More dissipation is obtained for gold than PS because the Au–air–Si interface has a higher Hamaker constant. The power dissipated by the 2nd mode also shows a maximum with A1/A01 near 0.2 (Figure 4c). A discussion about the energy transfer among different modes is presented by Solares and co-workers [48]. The data plotted in Figure 3 and Figure 4 has been obtained by using the dForce simulator [49].
Phase contrast in the attractive regime (no dissipation): A02 > A01 (inverted bimodal excitation)
In the first bimodal AM experiments the first mode carried the feedback controls while the second has an open loop (no feedback). This configuration introduced a significant asymmetry between the roles of the excited modes. This raises the question about the equivalence of the excited modes 1 and 2 for bimodal AM operation. To answer this question we have simulated a situation where the feedback operates in the second mode while the first mode has an open loop (inverted bimodal excitation). In the simulations, the free amplitude of the second mode is 10 nm while the one of the first ranges between 0.7 and 2 nm. Other relevant parameters are described in Tables 1, 2 and 3. The cross-mode representation has or Δ as dependent variables with respect to A2 or its ratio.
The phase shift versus A2/A02 shows a quick increase from 90° to close to 180° for a rather small reduction of the amplitude ratio (Figure 5a,b). In the inverted bimodal AM there is the phase contrast between Au and PS. In fact the contrast in terms of degrees is comparable to the one observed in bimodal AM, however, it happens for an extremely small range of set-point amplitudes ratios (0.99 and 0.999). This makes it impractical from the experimental point of view. In the direct bimodal AM the phase contrast is observed in almost all the amplitude ratio range from 0.1 to 0.99.
Consequently, the roles of modes 1 and 2 in bimodal AM are not equivalent. The asymmetry is more clearly seen by plotting the dependences of A1/A01 and A2/A02 with respect to zc for both the direct and the inverse bimodal AFM configurations (Figure 6). In the direct bimodal AM both A1 and A2 decrease with respect zc over similar range (Figure 6a). However, in inverted bimodal AM, A1 has almost vanished while A2 is still starting to notice the presence of the tip–surface force (Figure 6b). The origin of this asymmetry can be traced back to the sensitivity of an oscillating system with respect to Qi and ki. It has been shown that the phase shift sensitivity is proportional to the Qi/ki ratio [43]. This ratio decreases with increasing the eigenmode index [9].
Phase contrast in the repulsive regime (no dissipation): A01 > A02
In the repulsive regime, the phase shift decreases from the non-interacting phase shift (90°) with A1/A01 decreasing (Figure 7a and 7b). The decrease depends on the Young modulus and on the value of A02. For the same A1/A01-ratio lower phase shift values are observed on the stiffer material. The dependence on A02 follows the trend observed in the attractive regime. For the same A1/A01-ratio by reducing the value from 2 to 0.4 nm the phase shift variation (from the non-interacting value, 90°) is increased. More significantly, the phase contrast measured between Au and PS is also enhanced by reducing A02. A maximum is observed in the phase contrast dependence on the A1/A01-ratio (Figure 7c). The position of the maximum depends on A02. The lower the value of A02, the higher the A1/A01-ratio where the maximum is observed.
Trimodal AFM in the attractive regime
Solares and co-workers have extended the bimodal scheme by introducing an additional excitation in the third mode [39-41,46]. The third excitation in trimodal AFM offers two additional channels for compositional contrast. The value of A03 has been used modulate the indentation while imaging embedded nanoparticles in a soft polymer [23]. To understand some of the fundamental aspects of trimodal AFM and the differences with respect to bimodal AM we study the phase contrast in trimodal AFM in the attractive regime.
We have performed simulations by using an excitation force with contributions to the first three eigenmodes
The phase contrast is studied in terms of the kinetic energy (KE) of the excited modes [38]. It has been shown that the contrast reversal observed in bimodal AM depends on the relative kinetic energy maxima of the excited modes [35,36].
The kinetic energy analysis is applied to establish the optimum conditions for phase contrast in trimodal AFM. Table 4 shows the different amplitudes values used in the simulations and the corresponding kinetic energy relationships.
Figure 8a,b show the phase shift as function of the set-point amplitude for different energy ratios among modes. Each single curve reproduces the bimodal AM shape described before (Figure 2). Phase contrast between AU and PS is observed in all the cases irrespective of the kinetic energy distribution among the excited modes. However, the maximum contrast is obtained for a situation that minimizes the kinetic energy of the second mode with respect to the other two (Figure 8c). We also observe that the maximum contrast happens for an amplitude ratio about 0.5. This is far from the edge regions where the phase shift changes more rapidly.
We have also compared the phase contrast between bimodal and trimodal AFM (attractive regime). The shape of the phase shift curves are almost identical in bimodal and trimodal AM (Figure 9a,b). However, the introduction of third excitation improves the phase contrast (Figure 9c). This seems an advantage of trimodal with respect to bimodal AM, however, this happens at the expense of introducing additional electronic hardware and increasing the peak force. A more detailed study is needed to stablish the advantages/disadvantages of these multifrequency AFM configurations.
Conclusion
We have studied the phase contrast in bimodal amplitude modulation AFM for the attractive and the repulsive interaction regimes as a function of the amplitude and amplitude ratio of the excited modes. We have found that the contrast increases by minimizing the amplitude of the second mode. We have also compared the phase contrast for direct (conventional) and indirect bimodal AM configurations. We have found that bimodal AM favors the use of feedback controls on the amplitude of the lowest excited mode. This excitation/detection scheme maximizes the operational range. In the inverted bimodal AM configuration, the amplitude of the lowest excited mode disappears so quickly that only a very small range of amplitude ratios is left to perform bimodal AM. The origin of this asymmetry lies in the fact that the cantilever sensitivity to forces decreases with the mode number. The presence of tip–sample energy dissipation processes reduces the phase contrast observed between different materials in bimodal AM with respect to have exclusively non-conservative interactions.
The simulations show that in the attractive regime, the introduction of a small excitation in the third flexural mode improves the phase contrast with respect to bimodal AFM. This result is related to the distribution of the kinetic energies among the modes. In terms of compositional contrast it is favored the configuration that minimizes the kinetic energy of the imaging mode (second) with respect to any of the kinetic energies of the other modes. However, the increase in compositional sensitivity happens at the expense of increasing the peak forces.
References
-
Binnig, G.; Quate, C. F.; Gerber, C. Phys. Rev. Lett. 1986, 56, 930. doi:10.1103/PhysRevLett.56.930
Return to citation in text: [1] -
García, R.; Pérez, R. Surf. Sci. Rep. 2002, 47, 197. doi:10.1016/S0167-5729(02)00077-8
Return to citation in text: [1] [2] [3] -
Ando, T.; Uchihashi, T.; Fukuma, T. Prog. Surf. Sci. 2008, 83, 337. doi:10.1016/j.progsurf.2008.09.001
Return to citation in text: [1] -
Gan, Y. Surf. Sci. Rep. 2009, 64, 99–121. doi:10.1016/j.surfrep.2008.12.001
Return to citation in text: [1] -
Barth, C.; Foster, A. S.; Henry, C. R.; Shluger, A. L. Adv. Mater. 2011, 23, 477–501. doi:10.1002/adma.201002270
Return to citation in text: [1] -
Payam, A. F.; Ramos, J. R.; Garcia, R. ACS Nano 2012, 6, 4663–4670. doi:10.1021/nn2048558
Return to citation in text: [1] -
Dufrêne, Y. F.; Martínez-Martín, D.; Medalsy, I.; Alsteens, D.; Müller, D. J. Nat. Methods 2013, 10, 847–854. doi:10.1038/nmeth.2602
Return to citation in text: [1] [2] -
Garcia, R.; Knoll, A. W.; Riedo, E. Nat. Nanotechnol. 2014, 9, 577–587. doi:10.1038/nnano.2014.157
Return to citation in text: [1] -
Garcia, R.; Herruzo, E. T. Nat. Nanotechnol. 2012, 7, 217–226. doi:10.1038/nnano.2012.38
Return to citation in text: [1] [2] [3] [4] -
Sahin, O.; Magonov, S.; Su, C.; Quate, C. F.; Solgaard, O. Nat. Nanotechnol. 2007, 2, 507. doi:10.1038/nnano.2007.226
Return to citation in text: [1] -
Dong, M.; Sahin, O. Nat. Commun. 2011, 2, No. 247. doi:10.1038/ncomms1246
Return to citation in text: [1] -
Spitzner, E.-C.; Riesch, C.; Magerle, R. ACS Nano 2011, 5, 315–320. doi:10.1021/nn1027278
Return to citation in text: [1] -
Rico, F.; Su, C.; Scheuring, S. Nano Lett. 2011, 11, 3983–3986. doi:10.1021/nl202351t
Return to citation in text: [1] -
Raman, A.; Trigueros, S.; Cartagena, A.; Stevenson, A. P. Z.; Susilo, M.; Nauman, E.; Contera, S. A. Nat. Nanotechnol. 2011, 6, 809–814. doi:10.1038/nnano.2011.186
Return to citation in text: [1] -
Rodríguez, T. R.; García, R. Appl. Phys. Lett. 2004, 84, 449. doi:10.1063/1.1642273
Return to citation in text: [1] [2] [3] -
Martinez, N. F.; Patil, S.; Lozano, J. R.; Garcia, R. Appl. Phys. Lett. 2006, 89, 153115. doi:10.1063/1.2360894
Return to citation in text: [1] [2] [3] [4] -
Stark, R. W.; Naujokes, N.; Stemmer, A. Nanotechnology 2007, 18, 065502. doi:10.1088/0957-4484/18/6/065502
Return to citation in text: [1] [2] -
Li, Y. J.; Kobayashi, N.; Naitoh, Y.; Kageshima, M.; Sugawara, Y. Appl. Phys. Lett. 2008, 92, 121903. doi:10.1063/1.2901151
Return to citation in text: [1] [2] -
Li, J. W.; Cleveland, J. P.; Proksch, R. Appl. Phys. Lett. 2009, 94, 163118. doi:10.1063/1.3126521
Return to citation in text: [1] [2] -
Kawai, S.; Glatzel, T.; Koch, S.; Such, B.; Baratoff, A.; Meyer, E. Phys. Rev. Lett. 2009, 103, 220801. doi:10.1103/PhysRevLett.103.220801
Return to citation in text: [1] [2] -
Kawai, S.; Canova, F. F.; Glatzel, T.; Hynninen, T.; Meyer, E.; Foster, A. S. Phys. Rev. Lett. 2012, 109, 146101. doi:10.1103/PhysRevLett.109.146101
Return to citation in text: [1] [2] -
Garcia, R.; Proksch, R. Eur. Polym. J. 2013, 49, 1897–1906. doi:10.1016/j.eurpolymj.2013.03.037
Return to citation in text: [1] [2] -
Ebeling, D.; Eslami, B.; Solares, S. D. J. ACS Nano 2013, 7, 10387–10396. doi:10.1021/nn404845q
Return to citation in text: [1] [2] [3] [4] -
Santos, S. Appl. Phys. Lett. 2013, 103, 231603. doi:10.1063/1.4840075
Return to citation in text: [1] [2] -
Herruzo, E. T.; Perrino, A. P.; Garcia, R. Nat. Commun. 2014, 5, No. 3126. doi:10.1038/ncomms4126
Return to citation in text: [1] -
Sahin, O.; Yaralioglu, G.; Grow, R.; Zappe, S. F.; Atalar, A.; Quate, C.; Solgaard, O. Sens. Actuators, A 2004, 114, 183–190. doi:10.1016/j.sna.2003.11.031
Return to citation in text: [1] -
Platz, D.; Tholén, E. A.; Haviland, D. B. Appl. Phys. Lett. 2008, 92, 153106. doi:10.1063/1.2909569
Return to citation in text: [1] -
Forchheimer, D.; Platz, D.; Tholén, E. A.; Haviland, D. Phys. Rev. B 2012, 85, 195449. doi:10.1103/PhysRevB.85.195449
Return to citation in text: [1] -
Stan, G.; Solares, S. D.; Pittenger, B.; Erina, N.; Su, C. M. Nanoscale 2014, 6, 962–969. doi:10.1039/C3NR04981G
Return to citation in text: [1] -
Killgore, J. P.; Kelly, J. Y.; Stafford, C.; Fasolka, M.; Hurely, D. C.; Fasolka, M. J. Nanotechnology 2011, 22, 175706. doi:10.1088/0957-4484/22/17/175706
Return to citation in text: [1] -
Jesse, S.; Kalinin, S. V.; Proksch, R.; Baddrof, A. P.; Rodriguez, B. J. Nanotechnology 2007, 18, 435503. doi:10.1088/0957-4484/18/43/435503
Return to citation in text: [1] -
Jesse, S.; Vasudevan, R. K.; Collins, L.; Strelcov, E.; Okatan, M. B.; Belianinov, A.; Baddorf, A. P.; Proksch, R.; Kalinin, S. V. Annu. Rev. Phys. Chem. 2014, 65, 519–536. doi:10.1146/annurev-physchem-040513-103609
Return to citation in text: [1] -
Garcia, R.; Gómez, C. J.; Martinez, N. F.; Patil, S.; Dietz, C.; Magerle, R. Phys. Rev. Lett. 2006, 97, 016103. doi:10.1103/PhysRevLett.97.016103
Return to citation in text: [1] -
García, R.; San Paulo, A. Phys. Rev. B 1999, 60, 4961. doi:10.1103/PhysRevB.60.4961
Return to citation in text: [1] -
Kiracofe, D.; Raman, A.; Yablon, D. Beilstein J. Nanotechnol. 2013, 4, 385–393. doi:10.3762/bjnano.4.45
Return to citation in text: [1] [2] [3] [4] -
Chakraborty, I.; Yablon, D. G. Nanotechnology 2013, 24, 475706. doi:10.1088/0957-4484/24/47/475706
Return to citation in text: [1] [2] [3] [4] [5] -
Santos, S. Appl. Phys. Lett. 2014, 104, 143109. doi:10.1063/1.4870998
Return to citation in text: [1] [2] [3] -
Stark, R. W. Appl. Phys. Lett. 2009, 94, 063109. doi:10.1063/1.3080209
Return to citation in text: [1] [2] -
Solares, S. D.; Chawla, G. J. Appl. Phys. 2010, 108, 054901. doi:10.1063/1.3475644
Return to citation in text: [1] [2] -
Solares, S. D.; Chawla, G. Meas. Sci. Technol. 2010, 21, 125502. doi:10.1088/0957-0233/21/12/125502
Return to citation in text: [1] [2] -
Eslami, B.; Ebeling, D.; Solares, S. D. Beilstein J. Nanotechnol. 2014, 5, 1144–1151. doi:10.3762/bjnano.5.125
Return to citation in text: [1] [2] [3] -
Lozano, J. R.; Garcia, R. Phys. Rev. Lett. 2008, 100, 076102. doi:10.1103/PhysRevLett.100.076102
Return to citation in text: [1] [2] -
Dietz, C.; Herruzo, E. T.; Lozano, J. R.; Garcia, R. Nanotechnology 2011, 22, 125708. doi:10.1088/0957-4484/22/12/125708
Return to citation in text: [1] [2] [3] -
Martinez, N. F.; Lozano, J. R.; Herruzo, E. T.; García, F.; Richter, C.; Sulzbach, T.; García, R. Nanotechnology 2008, 19, 384011. doi:10.1088/0957-4484/19/38/384011
Return to citation in text: [1] -
Gigler, A. M.; Dietz, C.; Baumann, M.; Martinez, N. F.; Garcia, R.; Stark, R. W. Beilstein J. Nanotechnol. 2012, 3, 456–463. doi:10.3762/bjnano.3.52
Return to citation in text: [1] -
Solares, S. D.; An, S.; Long, C. J. Beilstein J. Nanotechnol. 2014, 5, 1637–1648. doi:10.3762/bjnano.5.175
Return to citation in text: [1] -
Lozano, J. R.; Garcia, R. Phys. Rev. B 2009, 79, 014110. doi:10.1103/PhysRevB.79.014110
Return to citation in text: [1] [2] [3] -
An, S.; Solares, S. D.; Santos, S.; Ebeling, D. Nanotechnology 2014, 25, 475701. doi:10.1088/0957-4484/25/47/475701
Return to citation in text: [1] -
Guzman, H. V.; Garcia, P. D.; Garcia, R. Beilstein J. Nanotechnol. 2015, 6, 369–379. doi:10.3762/bjnano.6.36
Return to citation in text: [1]
49. | Guzman, H. V.; Garcia, P. D.; Garcia, R. Beilstein J. Nanotechnol. 2015, 6, 369–379. doi:10.3762/bjnano.6.36 |
43. | Dietz, C.; Herruzo, E. T.; Lozano, J. R.; Garcia, R. Nanotechnology 2011, 22, 125708. doi:10.1088/0957-4484/22/12/125708 |
9. | Garcia, R.; Herruzo, E. T. Nat. Nanotechnol. 2012, 7, 217–226. doi:10.1038/nnano.2012.38 |
1. | Binnig, G.; Quate, C. F.; Gerber, C. Phys. Rev. Lett. 1986, 56, 930. doi:10.1103/PhysRevLett.56.930 |
2. | García, R.; Pérez, R. Surf. Sci. Rep. 2002, 47, 197. doi:10.1016/S0167-5729(02)00077-8 |
3. | Ando, T.; Uchihashi, T.; Fukuma, T. Prog. Surf. Sci. 2008, 83, 337. doi:10.1016/j.progsurf.2008.09.001 |
4. | Gan, Y. Surf. Sci. Rep. 2009, 64, 99–121. doi:10.1016/j.surfrep.2008.12.001 |
5. | Barth, C.; Foster, A. S.; Henry, C. R.; Shluger, A. L. Adv. Mater. 2011, 23, 477–501. doi:10.1002/adma.201002270 |
6. | Payam, A. F.; Ramos, J. R.; Garcia, R. ACS Nano 2012, 6, 4663–4670. doi:10.1021/nn2048558 |
7. | Dufrêne, Y. F.; Martínez-Martín, D.; Medalsy, I.; Alsteens, D.; Müller, D. J. Nat. Methods 2013, 10, 847–854. doi:10.1038/nmeth.2602 |
8. | Garcia, R.; Knoll, A. W.; Riedo, E. Nat. Nanotechnol. 2014, 9, 577–587. doi:10.1038/nnano.2014.157 |
9. | Garcia, R.; Herruzo, E. T. Nat. Nanotechnol. 2012, 7, 217–226. doi:10.1038/nnano.2012.38 |
35. | Kiracofe, D.; Raman, A.; Yablon, D. Beilstein J. Nanotechnol. 2013, 4, 385–393. doi:10.3762/bjnano.4.45 |
9. | Garcia, R.; Herruzo, E. T. Nat. Nanotechnol. 2012, 7, 217–226. doi:10.1038/nnano.2012.38 |
10. | Sahin, O.; Magonov, S.; Su, C.; Quate, C. F.; Solgaard, O. Nat. Nanotechnol. 2007, 2, 507. doi:10.1038/nnano.2007.226 |
11. | Dong, M.; Sahin, O. Nat. Commun. 2011, 2, No. 247. doi:10.1038/ncomms1246 |
12. | Spitzner, E.-C.; Riesch, C.; Magerle, R. ACS Nano 2011, 5, 315–320. doi:10.1021/nn1027278 |
13. | Rico, F.; Su, C.; Scheuring, S. Nano Lett. 2011, 11, 3983–3986. doi:10.1021/nl202351t |
14. | Raman, A.; Trigueros, S.; Cartagena, A.; Stevenson, A. P. Z.; Susilo, M.; Nauman, E.; Contera, S. A. Nat. Nanotechnol. 2011, 6, 809–814. doi:10.1038/nnano.2011.186 |
15. | Rodríguez, T. R.; García, R. Appl. Phys. Lett. 2004, 84, 449. doi:10.1063/1.1642273 |
16. | Martinez, N. F.; Patil, S.; Lozano, J. R.; Garcia, R. Appl. Phys. Lett. 2006, 89, 153115. doi:10.1063/1.2360894 |
17. | Stark, R. W.; Naujokes, N.; Stemmer, A. Nanotechnology 2007, 18, 065502. doi:10.1088/0957-4484/18/6/065502 |
18. | Li, Y. J.; Kobayashi, N.; Naitoh, Y.; Kageshima, M.; Sugawara, Y. Appl. Phys. Lett. 2008, 92, 121903. doi:10.1063/1.2901151 |
19. | Li, J. W.; Cleveland, J. P.; Proksch, R. Appl. Phys. Lett. 2009, 94, 163118. doi:10.1063/1.3126521 |
20. | Kawai, S.; Glatzel, T.; Koch, S.; Such, B.; Baratoff, A.; Meyer, E. Phys. Rev. Lett. 2009, 103, 220801. doi:10.1103/PhysRevLett.103.220801 |
21. | Kawai, S.; Canova, F. F.; Glatzel, T.; Hynninen, T.; Meyer, E.; Foster, A. S. Phys. Rev. Lett. 2012, 109, 146101. doi:10.1103/PhysRevLett.109.146101 |
22. | Garcia, R.; Proksch, R. Eur. Polym. J. 2013, 49, 1897–1906. doi:10.1016/j.eurpolymj.2013.03.037 |
23. | Ebeling, D.; Eslami, B.; Solares, S. D. J. ACS Nano 2013, 7, 10387–10396. doi:10.1021/nn404845q |
24. | Santos, S. Appl. Phys. Lett. 2013, 103, 231603. doi:10.1063/1.4840075 |
25. | Herruzo, E. T.; Perrino, A. P.; Garcia, R. Nat. Commun. 2014, 5, No. 3126. doi:10.1038/ncomms4126 |
26. | Sahin, O.; Yaralioglu, G.; Grow, R.; Zappe, S. F.; Atalar, A.; Quate, C.; Solgaard, O. Sens. Actuators, A 2004, 114, 183–190. doi:10.1016/j.sna.2003.11.031 |
27. | Platz, D.; Tholén, E. A.; Haviland, D. B. Appl. Phys. Lett. 2008, 92, 153106. doi:10.1063/1.2909569 |
28. | Forchheimer, D.; Platz, D.; Tholén, E. A.; Haviland, D. Phys. Rev. B 2012, 85, 195449. doi:10.1103/PhysRevB.85.195449 |
29. | Stan, G.; Solares, S. D.; Pittenger, B.; Erina, N.; Su, C. M. Nanoscale 2014, 6, 962–969. doi:10.1039/C3NR04981G |
30. | Killgore, J. P.; Kelly, J. Y.; Stafford, C.; Fasolka, M.; Hurely, D. C.; Fasolka, M. J. Nanotechnology 2011, 22, 175706. doi:10.1088/0957-4484/22/17/175706 |
31. | Jesse, S.; Kalinin, S. V.; Proksch, R.; Baddrof, A. P.; Rodriguez, B. J. Nanotechnology 2007, 18, 435503. doi:10.1088/0957-4484/18/43/435503 |
32. | Jesse, S.; Vasudevan, R. K.; Collins, L.; Strelcov, E.; Okatan, M. B.; Belianinov, A.; Baddorf, A. P.; Proksch, R.; Kalinin, S. V. Annu. Rev. Phys. Chem. 2014, 65, 519–536. doi:10.1146/annurev-physchem-040513-103609 |
39. | Solares, S. D.; Chawla, G. J. Appl. Phys. 2010, 108, 054901. doi:10.1063/1.3475644 |
40. | Solares, S. D.; Chawla, G. Meas. Sci. Technol. 2010, 21, 125502. doi:10.1088/0957-0233/21/12/125502 |
41. | Eslami, B.; Ebeling, D.; Solares, S. D. Beilstein J. Nanotechnol. 2014, 5, 1144–1151. doi:10.3762/bjnano.5.125 |
2. | García, R.; Pérez, R. Surf. Sci. Rep. 2002, 47, 197. doi:10.1016/S0167-5729(02)00077-8 |
36. | Chakraborty, I.; Yablon, D. G. Nanotechnology 2013, 24, 475706. doi:10.1088/0957-4484/24/47/475706 |
7. | Dufrêne, Y. F.; Martínez-Martín, D.; Medalsy, I.; Alsteens, D.; Müller, D. J. Nat. Methods 2013, 10, 847–854. doi:10.1038/nmeth.2602 |
9. | Garcia, R.; Herruzo, E. T. Nat. Nanotechnol. 2012, 7, 217–226. doi:10.1038/nnano.2012.38 |
2. | García, R.; Pérez, R. Surf. Sci. Rep. 2002, 47, 197. doi:10.1016/S0167-5729(02)00077-8 |
35. | Kiracofe, D.; Raman, A.; Yablon, D. Beilstein J. Nanotechnol. 2013, 4, 385–393. doi:10.3762/bjnano.4.45 |
36. | Chakraborty, I.; Yablon, D. G. Nanotechnology 2013, 24, 475706. doi:10.1088/0957-4484/24/47/475706 |
37. | Santos, S. Appl. Phys. Lett. 2014, 104, 143109. doi:10.1063/1.4870998 |
33. | Garcia, R.; Gómez, C. J.; Martinez, N. F.; Patil, S.; Dietz, C.; Magerle, R. Phys. Rev. Lett. 2006, 97, 016103. doi:10.1103/PhysRevLett.97.016103 |
35. | Kiracofe, D.; Raman, A.; Yablon, D. Beilstein J. Nanotechnol. 2013, 4, 385–393. doi:10.3762/bjnano.4.45 |
36. | Chakraborty, I.; Yablon, D. G. Nanotechnology 2013, 24, 475706. doi:10.1088/0957-4484/24/47/475706 |
37. | Santos, S. Appl. Phys. Lett. 2014, 104, 143109. doi:10.1063/1.4870998 |
38. | Stark, R. W. Appl. Phys. Lett. 2009, 94, 063109. doi:10.1063/1.3080209 |
35. | Kiracofe, D.; Raman, A.; Yablon, D. Beilstein J. Nanotechnol. 2013, 4, 385–393. doi:10.3762/bjnano.4.45 |
36. | Chakraborty, I.; Yablon, D. G. Nanotechnology 2013, 24, 475706. doi:10.1088/0957-4484/24/47/475706 |
15. | Rodríguez, T. R.; García, R. Appl. Phys. Lett. 2004, 84, 449. doi:10.1063/1.1642273 |
16. | Martinez, N. F.; Patil, S.; Lozano, J. R.; Garcia, R. Appl. Phys. Lett. 2006, 89, 153115. doi:10.1063/1.2360894 |
39. | Solares, S. D.; Chawla, G. J. Appl. Phys. 2010, 108, 054901. doi:10.1063/1.3475644 |
40. | Solares, S. D.; Chawla, G. Meas. Sci. Technol. 2010, 21, 125502. doi:10.1088/0957-0233/21/12/125502 |
41. | Eslami, B.; Ebeling, D.; Solares, S. D. Beilstein J. Nanotechnol. 2014, 5, 1144–1151. doi:10.3762/bjnano.5.125 |
46. | Solares, S. D.; An, S.; Long, C. J. Beilstein J. Nanotechnol. 2014, 5, 1637–1648. doi:10.3762/bjnano.5.175 |
16. | Martinez, N. F.; Patil, S.; Lozano, J. R.; Garcia, R. Appl. Phys. Lett. 2006, 89, 153115. doi:10.1063/1.2360894 |
17. | Stark, R. W.; Naujokes, N.; Stemmer, A. Nanotechnology 2007, 18, 065502. doi:10.1088/0957-4484/18/6/065502 |
18. | Li, Y. J.; Kobayashi, N.; Naitoh, Y.; Kageshima, M.; Sugawara, Y. Appl. Phys. Lett. 2008, 92, 121903. doi:10.1063/1.2901151 |
19. | Li, J. W.; Cleveland, J. P.; Proksch, R. Appl. Phys. Lett. 2009, 94, 163118. doi:10.1063/1.3126521 |
20. | Kawai, S.; Glatzel, T.; Koch, S.; Such, B.; Baratoff, A.; Meyer, E. Phys. Rev. Lett. 2009, 103, 220801. doi:10.1103/PhysRevLett.103.220801 |
21. | Kawai, S.; Canova, F. F.; Glatzel, T.; Hynninen, T.; Meyer, E.; Foster, A. S. Phys. Rev. Lett. 2012, 109, 146101. doi:10.1103/PhysRevLett.109.146101 |
22. | Garcia, R.; Proksch, R. Eur. Polym. J. 2013, 49, 1897–1906. doi:10.1016/j.eurpolymj.2013.03.037 |
23. | Ebeling, D.; Eslami, B.; Solares, S. D. J. ACS Nano 2013, 7, 10387–10396. doi:10.1021/nn404845q |
24. | Santos, S. Appl. Phys. Lett. 2013, 103, 231603. doi:10.1063/1.4840075 |
34. | García, R.; San Paulo, A. Phys. Rev. B 1999, 60, 4961. doi:10.1103/PhysRevB.60.4961 |
23. | Ebeling, D.; Eslami, B.; Solares, S. D. J. ACS Nano 2013, 7, 10387–10396. doi:10.1021/nn404845q |
42. | Lozano, J. R.; Garcia, R. Phys. Rev. Lett. 2008, 100, 076102. doi:10.1103/PhysRevLett.100.076102 |
23. | Ebeling, D.; Eslami, B.; Solares, S. D. J. ACS Nano 2013, 7, 10387–10396. doi:10.1021/nn404845q |
41. | Eslami, B.; Ebeling, D.; Solares, S. D. Beilstein J. Nanotechnol. 2014, 5, 1144–1151. doi:10.3762/bjnano.5.125 |
42. | Lozano, J. R.; Garcia, R. Phys. Rev. Lett. 2008, 100, 076102. doi:10.1103/PhysRevLett.100.076102 |
47. | Lozano, J. R.; Garcia, R. Phys. Rev. B 2009, 79, 014110. doi:10.1103/PhysRevB.79.014110 |
48. | An, S.; Solares, S. D.; Santos, S.; Ebeling, D. Nanotechnology 2014, 25, 475701. doi:10.1088/0957-4484/25/47/475701 |
47. | Lozano, J. R.; Garcia, R. Phys. Rev. B 2009, 79, 014110. doi:10.1103/PhysRevB.79.014110 |
36. | Chakraborty, I.; Yablon, D. G. Nanotechnology 2013, 24, 475706. doi:10.1088/0957-4484/24/47/475706 |
43. | Dietz, C.; Herruzo, E. T.; Lozano, J. R.; Garcia, R. Nanotechnology 2011, 22, 125708. doi:10.1088/0957-4484/22/12/125708 |
44. | Martinez, N. F.; Lozano, J. R.; Herruzo, E. T.; García, F.; Richter, C.; Sulzbach, T.; García, R. Nanotechnology 2008, 19, 384011. doi:10.1088/0957-4484/19/38/384011 |
45. | Gigler, A. M.; Dietz, C.; Baumann, M.; Martinez, N. F.; Garcia, R.; Stark, R. W. Beilstein J. Nanotechnol. 2012, 3, 456–463. doi:10.3762/bjnano.3.52 |
47. | Lozano, J. R.; Garcia, R. Phys. Rev. B 2009, 79, 014110. doi:10.1103/PhysRevB.79.014110 |
15. | Rodríguez, T. R.; García, R. Appl. Phys. Lett. 2004, 84, 449. doi:10.1063/1.1642273 |
16. | Martinez, N. F.; Patil, S.; Lozano, J. R.; Garcia, R. Appl. Phys. Lett. 2006, 89, 153115. doi:10.1063/1.2360894 |
43. | Dietz, C.; Herruzo, E. T.; Lozano, J. R.; Garcia, R. Nanotechnology 2011, 22, 125708. doi:10.1088/0957-4484/22/12/125708 |
© 2015 Damircheli et al; licensee Beilstein-Institut.
This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (http://www.beilstein-journals.org/bjnano)