Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons

Hatef Sadeghi, Sara Sangtarash and Colin J. Lambert
Beilstein J. Nanotechnol. 2015, 6, 1176–1182. https://doi.org/10.3762/bjnano.6.119

Cite the Following Article

Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons
Hatef Sadeghi, Sara Sangtarash and Colin J. Lambert
Beilstein J. Nanotechnol. 2015, 6, 1176–1182. https://doi.org/10.3762/bjnano.6.119

How to Cite

Sadeghi, H.; Sangtarash, S.; Lambert, C. J. Beilstein J. Nanotechnol. 2015, 6, 1176–1182. doi:10.3762/bjnano.6.119

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Ghosh, A.; Shadman Ahmed, S.; Shawkat, M. S. A.; Subrina, S. Numerical characterization of thermal transport in hexagonal tungsten disulfide (WS2) nanoribbons. Nanotechnology 2024, 35, 395708. doi:10.1088/1361-6528/ad5a9f
  • Ajeel, F. N.; Ahmed, A. B. Enhanced thermoelectric performances in graphene nanoribbons via BN dimers doping: Theoretical study. Chemical Physics Impact 2024, 8, 100413. doi:10.1016/j.chphi.2023.100413
  • Ardyani, M.; Ketabi, S. A.; Kalami, R. Effect of electromagnetic radiation on the electronic and thermoelectric properties of armchair edge silicene nanoribbons. Solid State Communications 2024, 384, 115486. doi:10.1016/j.ssc.2024.115486
  • Ajeel, F. N.; Ben Ahmed, A.; Khudhair, A. M. Enhanced thermoelectric figure of merit in graphene nanoribbons by creating a distortion and transition-metal doping. Nano-Structures & Nano-Objects 2024, 38, 101164. doi:10.1016/j.nanoso.2024.101164
  • Ardyani, M.; Ketabi, S. A.; Kalami, R. Effect of incident angle of electromagnetic radiation on the electronic and thermoelectric properties of POPGraphene nanoribbons. Journal of Computational Electronics 2024, 23, 647–660. doi:10.1007/s10825-024-02158-5
  • Ajeel, F. N.; Ahmed, A. B. Thermoelectric properties of armchair graphene nanoribbons: importance of quantum confinement. Journal of Nanoparticle Research 2024, 26. doi:10.1007/s11051-024-05963-y
  • Abdi, M.; Astinchap, B. Improving Thermoelectric Performance of Α−T3 Structure Via Integration of the Kane-Mele-Hubbard Model. Elsevier BV 2024. doi:10.2139/ssrn.4896004
  • Fakhri, M. A.; Dahham, N. A.; Al-Jobory, A. A. Ab initio study of electrical and thermal properties of dithino-naphtridine isomer for meta-meta linking. In AIP Conference Proceedings, AIP Publishing, 2024; pp 20030 ff. doi:10.1063/5.0207392
  • Armida, S. A.; Ebrahimibagha, D.; Ray, M.; Datta, S. Assessing thermoelectric performance of quasi 0D carbon and polyaniline nanocomposites using machine learning. Advanced Composite Materials 2023, 33, 388–410. doi:10.1080/09243046.2023.2262875
  • Kalami, R.; Ketabi, S. A. Electronic and Thermoelectric Properties of Armchair-Edge Silicene Nanoribbons: Role of Quantum Antidot Arrays. Journal of Electronic Materials 2023, 52, 6566–6577. doi:10.1007/s11664-023-10578-5
  • Takassa, R.; Mouncharih, A.; Elfatouaki, F.; Farkad, O.; Hassine, S.; Ouahdani, A.; Ibnouelghazi, E.; Abouelaoualim, D. Enhanced thermoelectric properties of SWCNT by new nitrogen chains doping. Diamond and Related Materials 2023, 136, 110000. doi:10.1016/j.diamond.2023.110000
  • Kalami, R.; Ketabi, S. A. Role of Linear Defects on the Electronic, Transport, and Thermoelectric Properties of Armchair Edge Silicene Nanoribbons. Journal of Electronic Materials 2023, 52, 4644–4654. doi:10.1007/s11664-023-10392-z
  • Ajeel, F. N.; Ahmed, A. B. Effect of ZnO dimers on the thermoelectric performance of armchair graphene nanoribbons. Journal of molecular modeling 2023, 29, 145. doi:10.1007/s00894-023-05545-0
  • González, K. A.; Núñez, C. D.; Orellana, P. A.; Rosales, L. Tuning the thermoelectric properties of doped silicene nanoribbon heterostructures. Frontiers in Physics 2023, 10. doi:10.3389/fphy.2022.1091325
  • Almeida, P. A.; Martins, G. B. Thermoelectric transport properties of armchair graphene nanoribbon heterostructures. Journal of physics. Condensed matter : an Institute of Physics journal 2022, 34, 335302. doi:10.1088/1361-648x/ac76fc
  • Akbarabadi, S. R.; Asl, M. M. Impurity Substitution Enhances Thermoelectric Figure of Merit in Zigzag Graphene Nanoribbons. Advances in Condensed Matter Physics 2021, 2021, 1–10. doi:10.1155/2021/8110754
  • Gholami, Z.; Khoeini, F. Vacancy tuned thermoelectric properties and high spin filtering performance in graphene/silicene heterostructures. Scientific reports 2021, 11, 15320. doi:10.1038/s41598-021-94842-w
  • Mijbil, Z. Y. Single-molecule thermoelectric properties susceptibility to environment molecules. Molecular Simulation 2021, 47, 1059–1065. doi:10.1080/08927022.2021.1946055
  • Singh, D.; Ahuja, R. Dimensionality effects in high-performance thermoelectric materials: Computational and experimental progress in energy harvesting applications. WIREs Computational Molecular Science 2021, 12. doi:10.1002/wcms.1547
  • Plasser, F. Exploitation of Baird Aromaticity and Clar’s Rule for Tuning the Triplet Energies of Polycyclic Aromatic Hydrocarbons. Chemistry 2021, 3, 532–549. doi:10.3390/chemistry3020038
Other Beilstein-Institut Open Science Activities