Cite the Following Article
Addition of Zn during the phosphine-based synthesis of indium phospide quantum dots: doping and surface passivation
Natalia E. Mordvinova, Alexander A. Vinokurov, Oleg I. Lebedev, Tatiana A. Kuznetsova and Sergey G. Dorofeev
Beilstein J. Nanotechnol. 2015, 6, 1237–1246.
https://doi.org/10.3762/bjnano.6.127
How to Cite
Mordvinova, N. E.; Vinokurov, A. A.; Lebedev, O. I.; Kuznetsova, T. A.; Dorofeev, S. G. Beilstein J. Nanotechnol. 2015, 6, 1237–1246. doi:10.3762/bjnano.6.127
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Qin, N.; Han, H.; Guan, G.; Han, M.-Y. Structurally altered size, composition, shape and interface-dependent optical properties of quantized nanomaterials. Nano Research 2024. doi:10.1007/s12274-024-6839-3
- Stone, D.; Li, X.; Naor, T.; Dai, J.; Remennik, S.; Banin, U. Size and Emission Control of Wurtzite InP Nanocrystals Synthesized from Cu3–xP by Cation Exchange. Chemistry of Materials 2023, 35, 10594–10605. doi:10.1021/acs.chemmater.3c02226
- Kim, S.; Yeon, S.; Lee, M.; Jin, J.; Shin, S.; Gwak, N.; Jeong, I.; Jang, H.; Hwang, G. W.; Oh, N. Chemically and electronically active metal ions on InAs quantum dots for infrared detectors. NPG Asia Materials 2023, 15. doi:10.1038/s41427-023-00477-w
- Oh, N.; Kim, S.; Yeon, S.; Lee, M.; Jin, J.; Shin, S.; Gwak, N.; Jeong, I.; Jang, H.; Hwang, G. W. Chemically and Electronically Active Metal Ions on InAs Quantum Dots for Infrared Detectors. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-2444772/v1
- Jalali, H. B.; Sadeghi, S.; Dogru Yuksel, I. B.; Onal, A.; Nizamoglu, S. Past, present and future of indium phosphide quantum dots. Nano Research 2022, 15, 4468–4489. doi:10.1007/s12274-021-4038-z
- Zhang, J.; Gu, H. Growth of InZnP/ZnS core/shell quantum dots with wide-range and refined tunable photoluminescence wavelengths. Dalton transactions (Cambridge, England : 2003) 2020, 49, 6119–6126. doi:10.1039/d0dt00575d
- Brown, R. P.; Gallagher, M. J.; Fairbrother, D. H.; Rosenzweig, Z. Synthesis and Degradation of Cadmium-Free InP and InPZn/ZnS Quantum Dots in Solution. Langmuir : the ACS journal of surfaces and colloids 2018, 34, 13924–13934. doi:10.1021/acs.langmuir.8b02402
- Vinokurov, A. A.; Chernysheva, G.; Mordvinova, N. E.; Dorofeev, S. G. Optical properties and structure of Ag-doped InP quantum dots prepared by a phosphine synthetic route. Dalton transactions (Cambridge, England : 2003) 2018, 47, 12414–12419. doi:10.1039/c8dt02434k
- Lee, S. K.; McLaurin, E. J. Recent advances in colloidal indium phosphide quantum dot production. Current Opinion in Green and Sustainable Chemistry 2018, 12, 76–82. doi:10.1016/j.cogsc.2018.06.004
- Koh, S.; Eom, T.; Kim, W. D.; Lee, K.; Lee, D.; Lee, Y.; Kim, H.; Bae, W. K.; Lee, D. C. Zinc–Phosphorus Complex Working as an Atomic Valve for Colloidal Growth of Monodisperse Indium Phosphide Quantum Dots. Chemistry of Materials 2017, 29, 6346–6355. doi:10.1021/acs.chemmater.7b01648
- Mordvinova, N. E.; Vinokurov, A. A.; Kuznetsova, T.; Lebedev, O. I.; Dorofeev, S. G. Highly luminescent core-shell InP/ZnX (X = S, Se) quantum dots prepared via a phosphine synthetic route. Dalton transactions (Cambridge, England : 2003) 2017, 46, 1297–1303. doi:10.1039/c6dt03956a
- Chen, W.-C.; Chen, C.-A.; Lin, N.-M.; Lyu, J.-H.; Liu, Y.-Z.; Li, C.-S.; Wu, B.-Y.; Shei, S.-C. White LEDs with CIS-ZnS quantum dots. In 2016 5th International Symposium on Next-Generation Electronics (ISNE), IEEE, 2016; pp 1–2. doi:10.1109/isne.2016.7543304
- Pietra, F.; De Trizio, L.; Hoekstra, A. W.; Renaud, N.; Prato, M.; Grozema, F. C.; Baesjou, P. J.; Koole, R.; Manna, L.; Houtepen, A. J. Tuning the Lattice Parameter of InxZnyP for Highly Luminescent Lattice-Matched Core/Shell Quantum Dots. ACS nano 2016, 10, 4754–4762. doi:10.1021/acsnano.6b01266.s001