Can molecular projected density of states (PDOS) be systematically used in electronic conductance analysis?

Tonatiuh Rangel, Gian-Marco Rignanese and Valerio Olevano
Beilstein J. Nanotechnol. 2015, 6, 1247–1259. https://doi.org/10.3762/bjnano.6.128

Cite the Following Article

Can molecular projected density of states (PDOS) be systematically used in electronic conductance analysis?
Tonatiuh Rangel, Gian-Marco Rignanese and Valerio Olevano
Beilstein J. Nanotechnol. 2015, 6, 1247–1259. https://doi.org/10.3762/bjnano.6.128

How to Cite

Rangel, T.; Rignanese, G.-M.; Olevano, V. Beilstein J. Nanotechnol. 2015, 6, 1247–1259. doi:10.3762/bjnano.6.128

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Arikpo, T. O.; Odey, M. O.; Agurokpon, D. C.; Malu, D. G.; Gulack, A. O.; Gber, T. E. Catalytic engineering of transition metal (TM: Ni, Pd, Pt)-coordinated Ge-doped graphitic carbon nitride (Ge@g-c3n4) nanostructures for petroleum hydrocarbon separation: An outlook from theoretical calculations. Heliyon 2024, 10, e38483. doi:10.1016/j.heliyon.2024.e38483
  • Wang, Z.; Liu, F.; Cui, K.; Feng, X.; Zhang, W.; Huang, Y. First-principles study of charge-transfer-plasmon-enhanced photoemission from a gold-nanoparticle–sodium-atom emitter. Physical Review A 2024, 109. doi:10.1103/physreva.109.043119
  • Prasad, T.; Prabhakar, B.; Bhavani, A. G.; Wani, T. A.; Ahuja, R. S. Effect of Hydrogen Gas on Titanium Dioxide using Heterostructure H2-TiO2: An ab-initio Study. E3S Web of Conferences 2024, 511, 1027–01027. doi:10.1051/e3sconf/202451101027
  • Frimpong, J.; Liu, Z.-F. Generalized Substrate Screening GW for Covalently Bonded Interfaces. The journal of physical chemistry letters 2024, 15, 2133–2141. doi:10.1021/acs.jpclett.3c03470
  • Peng, F.; Yuhua, W. Probing into the conduction band and type of carriers/traps on red/orange persistent phosphors in vacancy & solid-solution induced (Sr/Ba)1-xCaxGe4-yO9:Mn2. Dalton transactions (Cambridge, England : 2003) 2023, 52, 11047–11061. doi:10.1039/d3dt01513k
  • Seliverstov, A.; Muzychenko, D.; Volodin, A.; Janssens, E.; Haesendonck, C. V. Atomic structure and peculiarities of the electronic properties of Br layers on Ag(111) at different coverages. Surface Science 2023, 734, 122304. doi:10.1016/j.susc.2023.122304
  • Wang, Z.; Huang, Y.; Li, F.; Chuang, Y.; Huang, Z.; Bo, M. Charge density, atomic bonding and band structure of two-dimensional Sn, Sb, and Pb semimetals. Chemical Physics Letters 2022, 808, 140124. doi:10.1016/j.cplett.2022.140124
  • Sharma, S.; Oudhia, A.; Shrivastav, A. K.; Verma, M. L. Computational simulation-based study of novel ZnO Buckyball structures. Journal of molecular graphics & modelling 2022, 116, 108241. doi:10.1016/j.jmgm.2022.108241
  • Kumar, R.; Kumar, A.; Misra, N. In-silico investigation of silicon-doped 2D-activated carbon sheet. Pramana 2022, 96. doi:10.1007/s12043-021-02271-1
  • Cong, V. T.; Van Son, N.; Pham, S. Q. T. A comparison of CO oxidation on cleaned ZnO [Formula: see text] surface and defective ZnO [Formula: see text] surface using density functional theory studies. Journal of molecular modeling 2021, 28, 12. doi:10.1007/s00894-021-05011-9
  • Kumar, H.; Verma, M. L.; Baghel, R. The effect of molecular twisting on electronic and transport properties of Chitosan: Ab initio approach. Materials Today: Proceedings 2021, 44, 3032–3039. doi:10.1016/j.matpr.2021.02.439
  • Sharma, S.; Shrivastav, A. K.; Oudhia, A.; Verma, M. L. A First principle study of structural and electronic properties of ZnO and ZnS Buckyball structures. IOP Conference Series: Materials Science and Engineering 2020, 798, 012032. doi:10.1088/1757-899x/798/1/012032
  • Upma; Verma, M. L. First Principles Approach to Study the Structural, Electronic and Transport Properties of Dimer Chitosan with Graphene Electrodes. Journal of Electronic Materials 2019, 48, 4007–4016. doi:10.1007/s11664-019-07163-0
  • Upma; Mohan, L. V. STRUCTURES AND PROPERTIES OF BIOPOLYMER CHITOSAN - AFIRST PRINCIPLE STUDY. i-manager's Journal on Material Science 2019, 7, 16. doi:10.26634/jms.7.3.15642
  • Rumetshofer, M.; Dorn, G.; Boeri, L.; Arrigoni, E.; von der Linden, W. First-principles molecular transport calculation for the benzenedithiolate molecule. New Journal of Physics 2017, 19, 103007. doi:10.1088/1367-2630/aa8117
  • Upma; Verma, M. L.; Verma, D. First principle studies on electronic structure and charge density of potato starch. Ionics 2017, 23, 2881–2886. doi:10.1007/s11581-017-2182-y
  • Papior, N. R.; Lorente, N.; Frederiksen, T.; García, A.; Brandbyge, M. Improvements on non-equilibrium and transport Green function techniques: The next-generation TRANSIESTA. Computer Physics Communications 2017, 212, 8–24. doi:10.1016/j.cpc.2016.09.022
  • Byeon, Y. W.; Choi, Y.; Ahn, J. P.; Lee, J. C. Origin of high Coulombic loss during sodiation in Na-Sn battery. Journal of Power Sources 2017, 343, 513–519. doi:10.1016/j.jpowsour.2017.01.089
  • Liu, Z.-F.; Egger, D.; Refaely-Abramson, S.; Kronik, L.; Neaton, J. B. Energy Level Alignment at Molecule-Metal Interfaces from an Optimally-Tuned Range-Separated Hybrid Functional. The Journal of Chemical Physics 2017, 146, 092326. doi:10.1063/1.4975321
  • Caicedo-Dávila, S.; Lopez-Acevedo, O.; Velasco-Medina, J.; Avila, A. Density and localized states' impact on amorphous carbon electron transport mechanisms. Journal of Applied Physics 2016, 120, 214303. doi:10.1063/1.4971010
Other Beilstein-Institut Open Science Activities