Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials

Xiaoxing Ke, Carla Bittencourt and Gustaaf Van Tendeloo
Beilstein J. Nanotechnol. 2015, 6, 1541–1557. https://doi.org/10.3762/bjnano.6.158

Cite the Following Article

Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials
Xiaoxing Ke, Carla Bittencourt and Gustaaf Van Tendeloo
Beilstein J. Nanotechnol. 2015, 6, 1541–1557. https://doi.org/10.3762/bjnano.6.158

How to Cite

Ke, X.; Bittencourt, C.; Van Tendeloo, G. Beilstein J. Nanotechnol. 2015, 6, 1541–1557. doi:10.3762/bjnano.6.158

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Choi, J.; Jang, H.; Xuan, Z.; Park, D. Emerging roles of ATG9/ATG9A in autophagy: implications for cell and neurobiology. Autophagy 2024, 1–15. doi:10.1080/15548627.2024.2384349
  • Urbieta, M.; Barbry, M.; Koval, P.; Rivacoba, A.; Sánchez-Portal, D.; Aizpurua, J.; Zabala, N. Footprints of atomic-scale features in plasmonic nanoparticles as revealed by electron energy loss spectroscopy. Physical chemistry chemical physics : PCCP 2024, 26, 14991–15004. doi:10.1039/d4cp01034e
  • Othman, K. A.; Ali, L. I. A.; Qader, A. F.; Omer, R. A.; Amin, A. A. Synthesis, Characterization, and Applications of Carbon Dots for Determination of Pharmacological and Biological Samples: A Review. Journal of fluorescence 2024. doi:10.1007/s10895-024-03736-3
  • He, Y.; Hua, M. Z.; Feng, S.; Lu, X. Development of a smartphone-integrated microfluidic paper-based optosensing platform coupled with molecular imprinting technique for in-situ determination of histamine in canned tuna. Food chemistry 2024, 451, 139446. doi:10.1016/j.foodchem.2024.139446
  • Ma, H.; Jiao, Y.; Guo, W.; Liu, X.; Li, Y.; Wen, X. Machine learning predicts atomistic structures of multielement solid surfaces for heterogeneous catalysts in variable environments. Innovation (Cambridge (Mass.)) 2024, 5, 100571. doi:10.1016/j.xinn.2024.100571
  • Samira, R.; Cohen, A.; Eliasi, R.; Sherman, D.; Patolsky, F.; Lachman, N. Buckling and fracture characterization of pristine bundles of vertically aligned carbon nanotubes using quantitativein situTEM axial compression. Nanotechnology 2023, 35, 85703–085703. doi:10.1088/1361-6528/ad0f51
  • Ito, Y.; Ni, J.; Lee, C.; Gao, X.; Miyahara, Y.; Miyazaki, K.; Abe, T. Correlation between properties of various carbon defects and electrochemical charge carrier storage mechanisms for use in Li- and Na-based rechargeable batteries. Chemical Physics Reviews 2023, 4. doi:10.1063/5.0144995
  • Mead, J. L.; Wang, S.; Zimmermann, S.; Fatikow, S.; Huang, H. Resolving the Adhesive Behavior of 1D Materials: A Review of Experimental Approaches. Engineering 2023, 24, 39–72. doi:10.1016/j.eng.2023.02.012
  • Taurino, A.; Carlino, E. The Relevance of Building an Appropriate Environment around an Atomic Resolution Transmission Electron Microscope as Prerequisite for Reliable Quantitative Experiments: It Should Be Obvious, but It Is a Subtle Never-Ending Story!. Materials (Basel, Switzerland) 2023, 16, 1123. doi:10.3390/ma16031123
  • Cornu, R.; Laurent, G.; Beduneau, A. Preparation and characterization of PLGA nanoparticles. Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles for Drug Delivery; Elsevier, 2023; pp 27–54. doi:10.1016/b978-0-323-91215-0.00012-1
  • Patil, R. M.; Deshpande, P. P.; Aalhate, M.; Gananadhamu, S.; Singh, P. K. An Update on Sophisticated and Advanced Analytical Tools for Surface Characterization of Nanoparticles. Surfaces and Interfaces 2022, 33, 102165. doi:10.1016/j.surfin.2022.102165
  • Dadsetan, M.; Naseri, A.; Thomson, M. J. Real-time observation and quantification of carbon black oxidation in an environmental transmission electron microscope: Impact of particle size and electron beam. Carbon 2022, 190, 1–9. doi:10.1016/j.carbon.2021.12.089
  • Gusain, M.; Nagpal, R.; Zhan, Y. Analysis and characterization of quantum dots. Graphene, Nanotubes and Quantum Dots-Based Nanotechnology; Elsevier, 2022; pp 709–726. doi:10.1016/b978-0-323-85457-3.00027-x
  • Reis, J.; Oliveira, T.; Payan-Carreira, R. Emerging Nanomaterial-Based Medications: Key Challenges and Opportunities. Bio-manufactured Nanomaterials; Springer International Publishing, 2021; pp 59–82. doi:10.1007/978-3-030-67223-2_4
  • Riaño, N. R. Ph.D. Thesis, April 15, 2021; pp 1 ff.
  • Akbar, A.; Sadiq, M. B. Zinc oxide nanomaterials as antimicrobial agents for food applications. Zinc-Based Nanostructures for Environmental and Agricultural Applications; Elsevier, 2021; pp 167–180. doi:10.1016/b978-0-12-822836-4.00012-4
  • Dadsetan, M.; Naseri, A.; Thomson, M. J. Real-Time Observation and Quantification of Carbon Black Oxidation in an Environmental Transmission Electron Microscope: Impact of Particle Size and Electron Beam. SSRN Electronic Journal 2021. doi:10.2139/ssrn.3969113
  • Botero, M. L.; Akroyd, J.; Chen, D.; Kraft, M.; Agudelo, J. R. On the thermophoretic sampling and TEM-based characterisation of soot particles in flames. Carbon 2021, 171, 711–722. doi:10.1016/j.carbon.2020.09.074
  • Li, M.; Zhang, Y.; Wang, L.; Xi, N.; Xin, X.; Jin, X.; Wu, M. An experimental and theoretical study on nanomachining forces along zigzag and armchair lattice orientations of monolayer MoS2. Materials Research Express 2020, 7, 095002. doi:10.1088/2053-1591/abb32d
  • Tsolaki, E.; Bertazzo, S. Electron Microscopy for the Characterization of Soft Tissue Mineralization. Contemporary Cardiology; Springer International Publishing, 2020; pp 219–234. doi:10.1007/978-3-030-46725-8_10
Other Beilstein-Institut Open Science Activities