Cite the Following Article
A simple method for the determination of qPlus sensor spring constants
John Melcher, Julian Stirling and Gordon A. Shaw
Beilstein J. Nanotechnol. 2015, 6, 1733–1742.
https://doi.org/10.3762/bjnano.6.177
How to Cite
Melcher, J.; Stirling, J.; Shaw, G. A. Beilstein J. Nanotechnol. 2015, 6, 1733–1742. doi:10.3762/bjnano.6.177
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Nony, L.; Clair, S.; Uehli, D.; Herrero, A.; Themlin, J.-M.; Campos, A.; Para, F.; Pioda, A.; Loppacher, C. Stiffness calibration of qPlus sensors at low temperature through thermal noise measurements. Beilstein journal of nanotechnology 2024, 15, 580–602. doi:10.3762/bjnano.15.50
- Cripe, J.; Arumugam, K.; Gerbig, Y.; Shaw, G. A static stiffness reference object for instrumented indentation with integrated fiber Fabry–Perot displacement measuring interferometer. Measurement Science and Technology 2023, 34, 125032. doi:10.1088/1361-6501/acf237
- Arumugam, K.; Shaw, G. Perspective on small mass and force measurements. Measurement Science and Technology 2023, 34, 81002–081002. doi:10.1088/1361-6501/acd134
- Yamada, Y.; Ichii, T.; Utsunomiya, T.; Kimura, K.; Kobayashi, K.; Yamada, H.; Sugimura, H. Fundamental and higher eigenmodes of qPlus sensors with a long probe for vertical-lateral bimodal atomic force microscopy. Nanoscale advances 2023, 5, 840–850. doi:10.1039/d2na00686c
- Kort-Kamp, W. J. M.; Murdick, R. A.; Htoon, H.; Jones, A. C. Utilization of coupled eigenmodes in Akiyama atomic force microscopy probes for bimodal multifrequency sensing. Nanotechnology 2022, 33, 455501. doi:10.1088/1361-6528/ac8232
- Weymouth, A. J.; Gretz, O.; Riegel, E.; Giessibl, F. J. Measuring sliding friction at the atomic scale. Japanese Journal of Applied Physics 2022, 61, SL0801. doi:10.35848/1347-4065/ac5e4a
- Yan, L.; 中国科学院物理研究所, 纳.; Qi, Z.; Xiao, C.; Li, H.; Xiao, L.; Zhi-Hai, C.; Hong-Jun, G. Atomic, molecular, charge manipulation and application of atomic force microscopy. Acta Physica Sinica 2021, 70, 136802-1–136802-23. doi:10.7498/aps.70.20202129
- Miyato, Y.; Otani, K.; Maeda, M.; Nagashima, K.; Abe, M. Investigating ice surfaces formed near the freezing point in the vapor phase via atomic force microscopy. Japanese Journal of Applied Physics 2019, 58, SIIA09. doi:10.7567/1347-4065/ab203d
- Lee, M.; Kim, B.; An, S.; Jhe, W. Dynamic Responses of Electrically Driven Quartz Tuning Fork and qPlus Sensor: A Comprehensive Electromechanical Model for Quartz Tuning Fork. Sensors (Basel, Switzerland) 2019, 19, 2686. doi:10.3390/s19122686
- Chang, C.-O.; Chang-Chien, W.-T.; Song, J.-P.; Zhou, C.; Huang, B.-S. Analysis of the Frequency Shift versus Force Gradient of a Dynamic AFM Quartz Tuning Fork Subject to Lennard-Jones Potential Force. Sensors (Basel, Switzerland) 2019, 19, 1948. doi:10.3390/s19081948
- Giessibl, F. J. The qPlus sensor, a powerful core for the atomic force microscope. The Review of scientific instruments 2019, 90, 011101. doi:10.1063/1.5052264
- Hawk, J. E.; Ghoraishi, M. S.; Phani, A.; Thundat, T. Exploiting broader dynamic range in Si-bridge modified QTF’s for sensitive thermometric applications. Sensors and Actuators A: Physical 2018, 279, 442–447. doi:10.1016/j.sna.2018.05.020
- Shaw, G. A. Current state of the art in small mass and force metrology within the International System of Units. Measurement Science and Technology 2018, 29, 072001. doi:10.1088/1361-6501/aaac51
- Glatzel, T.; Schimmel, T. Advanced atomic force microscopy techniques III. Beilstein journal of nanotechnology 2016, 7, 1052–1054. doi:10.3762/bjnano.7.98