Two-phase equilibrium states in individual Cu–Ni nanoparticles: size, depletion and hysteresis effects

Aram S. Shirinyan
Beilstein J. Nanotechnol. 2015, 6, 1811–1820. https://doi.org/10.3762/bjnano.6.185

Cite the Following Article

Two-phase equilibrium states in individual Cu–Ni nanoparticles: size, depletion and hysteresis effects
Aram S. Shirinyan
Beilstein J. Nanotechnol. 2015, 6, 1811–1820. https://doi.org/10.3762/bjnano.6.185

How to Cite

Shirinyan, A. S. Beilstein J. Nanotechnol. 2015, 6, 1811–1820. doi:10.3762/bjnano.6.185

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Bogatyrenko, S. I.; Kryshtal, A. P.; Kruk, A. Effect of Size on the Formation of Solid Solutions in Ag-Cu Nanoparticles. The journal of physical chemistry. C, Nanomaterials and interfaces 2023, 127, 2569–2580. doi:10.1021/acs.jpcc.2c07132
  • Oshchepkov, A. G.; Simonov, P. A.; Kuznetsov, A. N.; Shermukhamedov, S. A.; Nazmutdinov, R. R.; Kvon, R. I.; Zaikovskii, V. I.; Kardash, T. Y.; Fedorova, E. A.; Cherstiouk, O. V.; Bonnefont, A.; Savinova, E. R. Bimetallic NiM/C (M = Cu and Mo) Catalysts for the Hydrogen Oxidation Reaction: Deciphering the Role of Unintentional Surface Oxides in the Activity Enhancement. ACS Catalysis 2022, 12, 15341–15351. doi:10.1021/acscatal.2c03720
  • Zhang, X.; Zhang, J.; Wang, H.; Rogal, J.; Li, H.-Y.; Wei, S.-H.; Hickel, T. Defect-characterized phase transition kinetics. Applied Physics Reviews 2022, 9. doi:10.1063/5.0117234
  • Tiwari, K.; Paliwal, M.; Biwas, K. Phase transformation of Ag–Cu alloy nanoparticle embedded in Ni matrix. Journal of Materials Research 2022, 37, 4124–4139. doi:10.1557/s43578-022-00777-x
  • Kim, H. G.; Lee, J.; Makov, G. Phase Diagram of Binary Alloy Nanoparticles under High Pressure. Materials (Basel, Switzerland) 2021, 14, 2929. doi:10.3390/ma14112929
  • Taranovskyy, A.; Tomán, J. J.; Gajdics, B.; Erdélyi, Z. 3D phase diagrams and the thermal stability of two-component Janus nanoparticles: effects of size, average composition and temperature. Physical chemistry chemical physics : PCCP 2021, 23, 6116–6127. doi:10.1039/d0cp06695h
  • Dukarov, S. V.; Petrushenko, S.; Bloshenko, Z. V.; Bulgakova, O.; Sukhov, V. N. Structure of tin-indium alloys in condensed films. Materials Today: Proceedings 2021, 35, 609–615. doi:10.1016/j.matpr.2019.11.282
  • Dukarov, S.; Petrushenko, S.; Bulhakova, O.; Sukhov, V. N.; Nevgasivmov, A. Solubility Size Effect in Pb/Ag Binary Films. In 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP), IEEE, 2020; 1TFC04–1-01TFC04-5. doi:10.1109/nap51477.2020.9309604
  • Shishulin, A. V.; Fedoseev, V. B. Thermal Stability and Phase Composition of Stratifying Polymer Solutions in Small-Volume Droplets. Journal of Engineering Physics and Thermophysics 2020, 93, 802–809. doi:10.1007/s10891-020-02182-9
  • Shirinyan, A.; Wilde, G.; Bilogorodskyy, Y. Melting loops in the phase diagram of individual nanoscale alloy particles: completely miscible Cu–Ni alloys as a model system. Journal of Materials Science 2020, 55, 12385–12402. doi:10.1007/s10853-020-04812-2
  • Sun, Y.; Liu, S.; Guo, X.; Huang, S. Structural, magnetic and electronic properties of CunNi55−n (n = 0–55) nanoparticles: Combination artificial bee colony algorithm with DFT. Computational and Theoretical Chemistry 2019, 1154, 11–16. doi:10.1016/j.comptc.2019.03.008
  • Guisbiers, G. Advances in thermodynamic modelling of nanoparticles. Advances in Physics: X 2019, 4, 1668299. doi:10.1080/23746149.2019.1668299
  • Magomedov, M. N. On the Calculation of the Debye Temperature and Crystal-Liquid Phase Transition Temperature of a Binary Substitution Alloy. Physics of the Solid State 2018, 60, 981–988. doi:10.1134/s1063783418050190
  • Shirinyan, A.; Wilde, G.; Bilogorodskyy, Y. Solidification loops in the phase diagram of nanoscale alloy particles: from a specific example towards a general vision. Journal of Materials Science 2017, 53, 2859–2879. doi:10.1007/s10853-017-1697-y
  • Guisbiers, G.; Mendoza-Perez, R.; Bazán-Díaz, L.; Mendoza-Cruz, R.; Velázquez-Salazar, J. J.; Jose-Yacaman, M. Size and Shape Effects on the Phase Diagrams of Nickel-Based Bimetallic Nanoalloys. The Journal of Physical Chemistry C 2017, 121, 6930–6939. doi:10.1021/acs.jpcc.6b09115
  • Ferrando, R. Theoretical and computational methods for nanoalloy structure and thermodynamics. Structure and Properties of Nanoalloys; Elsevier, 2016; Vol. 10, pp 75–129. doi:10.1016/b978-0-08-100212-4.00004-3
  • Bibliography. Structure and Properties of Nanoalloys; Elsevier, 2016; pp 289–327. doi:10.1016/b978-0-08-100212-4.09990-9
Other Beilstein-Institut Open Science Activities