The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

Rachel M. Thorman, Ragesh Kumar T. P., D. Howard Fairbrother and Oddur Ingólfsson
Beilstein J. Nanotechnol. 2015, 6, 1904–1926. https://doi.org/10.3762/bjnano.6.194

Cite the Following Article

The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors
Rachel M. Thorman, Ragesh Kumar T. P., D. Howard Fairbrother and Oddur Ingólfsson
Beilstein J. Nanotechnol. 2015, 6, 1904–1926. https://doi.org/10.3762/bjnano.6.194

How to Cite

Thorman, R. M.; Kumar T. P., R.; Fairbrother, D. H.; Ingólfsson, O. Beilstein J. Nanotechnol. 2015, 6, 1904–1926. doi:10.3762/bjnano.6.194

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Pruchnik, B.; Kwoka, K.; Gacka, E.; Badura, D.; Kunicki, P.; Sierakowski, A.; Janus, P.; Piasecki, T.; Gotszalk, T. New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures. Beilstein Journal of Nanotechnology 2024, 15, 1273–1282. doi:10.3762/bjnano.15.103
  • Damour, Y.; Scemama, A.; Kossoski, F.; Loos, P.-F. Selected Configuration Interaction for Resonances. The journal of physical chemistry letters 2024, 15, 8296–8305. doi:10.1021/acs.jpclett.4c02060
  • Ashburn, N. M.; Lang, X.; Jo, Y.; Lee, Y.; Yao, X.; Cho, K. First principles reaction processes of Co(CO)3NO as an atomic layer deposition precursor on SiO2 and Co surfaces. Journal of Vacuum Science & Technology A 2024, 42. doi:10.1116/6.0003769
  • Lyshchuk, H.; Chaudhary, A.; Luxford, T. F. M.; Ranković, M.; Kočišek, J.; Fedor, J.; McElwee-White, L.; Nag, P. Electron-induced ligand loss from iron tetracarbonyl methyl acrylate. Beilstein journal of nanotechnology 2024, 15, 797–807. doi:10.3762/bjnano.15.66
  • Randi, P. A. S.; Moreira, G. M.; Bettega, M. H. F. Elastic cross section data for precursor molecules used in low-temperature plasmas: Sn(CH3)4 and Ga(CH3)3. Plasma Sources Science and Technology 2024, 33, 75006. doi:10.1088/1361-6595/ad5d13
  • Cui, E.; Zheng, Z.; Gao, M.; Yao, X. Investigating electron-induced dissociation dynamics in the organometallic precursor Fe(CO)5: a nonadiabatic molecular dynamics approach. Journal of Physics D: Applied Physics 2024, 57, 375303. doi:10.1088/1361-6463/ad5735
  • Solov'yov, A. V.; Verkhovtsev, A. V.; Mason, N. J.; Amos, R. A.; Bald, I.; Baldacchino, G.; Dromey, B.; Falk, M.; Fedor, J.; Gerhards, L.; Hausmann, M.; Hildenbrand, G.; Hrabovský, M.; Kadlec, S.; Kočišek, J.; Lépine, F.; Ming, S.; Nisbet, A.; Ricketts, K.; Sala, L.; Schlathölter, T.; Wheatley, A. E. H.; Solov'yov, I. A. Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment. Chemical reviews 2024, 124, 8014–8129. doi:10.1021/acs.chemrev.3c00902
  • Pruchnik, B.; Piasecki, T.; Gacka, E.; Masteghin, M. G.; Cox, D. C.; Gotszalk, T. Improvement of MEMS Thermomechanical Actuation Efficiency by Focused Ion Beam-Induced Deposition. Journal of Microelectromechanical Systems 2024, 33, 362–368. doi:10.1109/jmems.2024.3377595
  • Pruchnik, B. C.; Fidelus, J. D.; Gacka, E.; Mika, K.; Zaraska, L.; Sulka, G. D.; Gotszalk, T. P. Atomic force microscopy in mechanical measurements of single nanowires. Ultramicroscopy 2024, 263, 113985. doi:10.1016/j.ultramic.2024.113985
  • Abdel-Rahman, M. K.; Eckhert, P. M.; McElwee-White, L.; Fairbrother, D. H. Reactions of Ions with Adsorbed Me3PtCpMe: The Role of Ion Identity. The Journal of Physical Chemistry C 2024, 128, 7723–7732. doi:10.1021/acs.jpcc.4c00630
  • Butrymowicz-Kubiak, A.; Luba, W.; Madajska, K.; Muzioł, T.; Szymańska, I. B. Pivalate complexes of copper(ii) with aliphatic amines as potential precursors for depositing nanomaterials from the gas phase. New Journal of Chemistry 2024, 48, 6232–6245. doi:10.1039/d3nj04959k
  • Mészáros, D.; Matejčík, Š.; Papp, P. Formation of negative ions from cobalt tricarbonyl nitrosyl Co(CO)3NO clusters. Physical chemistry chemical physics : PCCP 2024, 26, 7522–7533. doi:10.1039/d3cp05601e
  • Pandey, M.; Antony, B. Calculations of electron scattering cross sections from tungsten precursors used in FEBID. Journal of Electron Spectroscopy and Related Phenomena 2024, 271, 147430. doi:10.1016/j.elspec.2024.147430
  • Gacka, E.; Pruchnik, B. C.; Tamulewicz-Szwajkowska, M.; Badura, D.; Rangelow, I.; Gotszalk, T. P. Fabrication of Focused Ion Beam-Deposited Nanowire Probes for Conductive Atomic Force Microscopy. Elsevier BV 2024. doi:10.2139/ssrn.4697037
  • Piasecki, T.; Kwoka, K.; Gacka, E.; Kunicki, P.; Gotszalk, T. Electrical, thermal and noise properties of platinum-carbon free-standing nanowires designed as nanoscale resistive thermal devices. Nanotechnology 2023, 35, 115502. doi:10.1088/1361-6528/ad13c0
  • Bilgilisoy, E.; Kamali, A.; Gentner, T. X.; Ballmann, G.; Harder, S.; Steinrück, H.-P.; Marbach, H.; Ingólfsson, O. A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2. Beilstein journal of nanotechnology 2023, 14, 1178–1199. doi:10.3762/bjnano.14.98
  • Höflich, K.; Hobler, G.; Allen, F. I.; Wirtz, T.; Rius, G.; McElwee-White, L.; Krasheninnikov, A. V.; Schmidt, M.; Utke, I.; Klingner, N.; Osenberg, M.; Córdoba, R.; Djurabekova, F.; Manke, I.; Moll, P.; Manoccio, M.; De Teresa, J. M.; Bischoff, L.; Michler, J.; De Castro, O.; Delobbe, A.; Dunne, P.; Dobrovolskiy, O. V.; Frese, N.; Gölzhäuser, A.; Mazarov, P.; Koelle, D.; Möller, W.; Pérez-Murano, F.; Philipp, P.; Vollnhals, F.; Hlawacek, G. Roadmap for focused ion beam technologies. Applied Physics Reviews 2023, 10. doi:10.1063/5.0162597
  • Winkler, R.; Brugger-Hatzl, M.; Porrati, F.; Kuhness, D.; Mairhofer, T.; Seewald, L. M.; Kothleitner, G.; Huth, M.; Plank, H.; Barth, S. Pillar Growth by Focused Electron Beam-Induced Deposition Using a Bimetallic Precursor as Model System: High-Energy Fragmentation vs. Low-Energy Decomposition. Nanomaterials (Basel, Switzerland) 2023, 13, 2907. doi:10.3390/nano13212907
  • Kopyra, J.; Abdoul-Carime, H. Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons. Beilstein journal of nanotechnology 2023, 14, 980–987. doi:10.3762/bjnano.14.81
  • Kamali, A.; Carden, W. G.; Johnson, J. V.; McElwee-White, L.; Ingólfsson, O. Dissociative electron attachment and dissociative ionization of CF3AuCNC(CH3)3, a potential FEBID precursor for gold deposition. The European Physical Journal D 2023, 77. doi:10.1140/epjd/s10053-023-00721-6
Other Beilstein-Institut Open Science Activities