Cite the Following Article
Comprehensive characterization and understanding of micro-fuel cells operating at high methanol concentrations
Aldo S. Gago, Juan-Pablo Esquivel, Neus Sabaté, Joaquín Santander and Nicolas Alonso-Vante
Beilstein J. Nanotechnol. 2015, 6, 2000–2006.
https://doi.org/10.3762/bjnano.6.203
How to Cite
Gago, A. S.; Esquivel, J.-P.; Sabaté, N.; Santander, J.; Alonso-Vante, N. Beilstein J. Nanotechnol. 2015, 6, 2000–2006. doi:10.3762/bjnano.6.203
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Moreira, C. S.; Pinto, A. M. F. R.; Oliveira, V. B. The Effect of a Reduction in the Catalyst Loading on a Mini Passive Direct Methanol Fuel Cell. Energies 2024, 17, 5174. doi:10.3390/en17205174
- Jayakumar, A.; Madheswaran, D. K.; Kumar, N. M. A Critical Assessment on Functional Attributes and Degradation Mechanism of Membrane Electrode Assembly Components in Direct Methanol Fuel Cells. Sustainability 2021, 13, 13938. doi:10.3390/su132413938
- Mora-Hernández, J.; Vega-Granados, K.; Estudillo-Wong, L. A.; Canaff, C.; Alonso-Vante, N. Chemistry, Surface Electrochemistry, and Electrocatalysis of Carbon-Supported Palladium-Selenized Nanoparticles. ACS Applied Energy Materials 2020, 3, 11434–11444. doi:10.1021/acsaem.0c02370
- El-Zoheiry, R. M.; Mori, S.; Ahmed, M. Using multi-path spiral flow fields to enhance under-rib mass transport in direct methanol fuel cells. International Journal of Hydrogen Energy 2019, 44, 30663–30681. doi:10.1016/j.ijhydene.2018.11.146
- Wang, J. doi:10.1002/9783527814305.ch8
- Oliveira, R.; Santander, J.; Rego, R. Overview of Direct Liquid Oxidation Fuel Cells and its Application as Micro-Fuel Cells. Advanced Electrocatalysts for Low-Temperature Fuel Cells; Springer International Publishing, 2018; pp 129–174. doi:10.1007/978-3-319-99019-4_4
- Gago, A. S.; Luo, Y.; Alonso-Vante, N. Chalcogenide Electrocatalysts for Energy Conversion Fuel Cell. Encyclopedia of Interfacial Chemistry; Elsevier, 2018; pp 419–445. doi:10.1016/b978-0-12-409547-2.13339-6
- Mora-Hernández, J.; Alonso-Vante, N. Membraneless micro-fuel-cell designs for portable applications. Portable Hydrogen Energy Systems; Elsevier, 2018; pp 125–159. doi:10.1016/b978-0-12-813128-2.00008-5
- Tang, J.; Chen, D.; Yao, Q.; Xie, J.; Yang, J. Recent advances in noble metal-based nanocomposites for electrochemical reactions. Materials Today Energy 2017, 6, 115–127. doi:10.1016/j.mtener.2017.09.005
- Feng, Y.; Liu, H.; Yang, J. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol. Science advances 2017, 3, e1700580. doi:10.1126/sciadv.1700580
- Ercelik, M.; Ozden, A.; Devrim, Y.; Colpan, C. O. Investigation of Nafion based composite membranes on the performance of DMFCs. International Journal of Hydrogen Energy 2017, 42, 2658–2668. doi:10.1016/j.ijhydene.2016.06.215
- Morawietz, T.; Handl, M.; Oldani, C.; Friedrich, K. A.; Hiesgen, R. Quantitative in Situ Analysis of Ionomer Structure in Fuel Cell Catalytic Layers. ACS applied materials & interfaces 2016, 8, 27044–27054. doi:10.1021/acsami.6b07188
- Mora-Hernández, J.; Luo, Y.; Alonso-Vante, N. What Can We Learn in Electrocatalysis, from Nanoparticulated Precious and/or Non-Precious Catalytic Centers Interacting with Their Support?. Catalysts 2016, 6, 145. doi:10.3390/catal6090145
- Miller, H. A.; Wang, L.; Bellini, M.; Filippi, J.; Marchionni, A.; Folliero, M. G.; Lavacchi, A.; Pagliaro, M. V.; Vizza, F. Performance Evaluation of a Platinum‐Free Microscale Alkaline Direct Ethanol Fuel Cell Operating for Long Periods. Energy Technology 2016, 4, 1119–1124. doi:10.1002/ente.201600143