Cite the Following Article
High Ion/Ioff current ratio graphene field effect transistor: the role of line defect
Mohammad Hadi Tajarrod and Hassan Rasooli Saghai
Beilstein J. Nanotechnol. 2015, 6, 2062–2068.
https://doi.org/10.3762/bjnano.6.210
How to Cite
Tajarrod, M. H.; Saghai, H. R. Beilstein J. Nanotechnol. 2015, 6, 2062–2068. doi:10.3762/bjnano.6.210
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Ahmad, M. A.; Mech, B. C.; Kumar, J. Impact analysis of vacancy defects on Analog/RF performance parameters of GNR FET. Micro and Nanostructures 2022, 171, 207428. doi:10.1016/j.micrna.2022.207428
- Li, Y.; Choe, M.; Jin, S.; Luo, D.; Bakharev, P. V.; Seong, W. K.; Ding, F.; Lee, Z.; Ruoff, R. S. Silica Particle-Mediated Growth of Single Crystal Graphene Ribbons on Cu(111) Foil. Small (Weinheim an der Bergstrasse, Germany) 2022, 18, e2202536. doi:10.1002/smll.202202536
- Radsar, T.; Khalesi, H.; Ghods, V. Graphene nanoribbon field effect transistors analysis and applications. Superlattices and Microstructures 2021, 153, 106869. doi:10.1016/j.spmi.2021.106869
- Lone, S.; Bhardwaj, A.; Pandit, A. K.; Gupta, S.; Mahajan, S. A Review of Graphene Nanoribbon Field-Effect Transistor Structures. Journal of Electronic Materials 2021, 50, 3169–3186. doi:10.1007/s11664-021-08859-y
- Wong, K. L.; Chuan, M. W.; Hamzah, A.; Rusli, S.; Alias, N. E.; Sultan, S. M.; Lim, C. S.; Tan, M. L. P. Performance metrics of current transport in pristine graphene nanoribbon field-effect transistors using recursive non-equilibrium Green's function approach. Superlattices and Microstructures 2020, 145, 106624. doi:10.1016/j.spmi.2020.106624
- Sakkaki, B.; Saghai, H. R.; Darvish, G.; Khatir, M. A new photodetector structure based on graphene nanomeshes: an ab initio study. Beilstein journal of nanotechnology 2020, 11, 1036–1044. doi:10.3762/bjnano.11.88
- Taouririt, T. E.; Meftah, A.; Sengouga, N.; Adaika, M.; Chala, S.; Meftah, A. Effects of high-k gate dielectrics on the electrical performance and reliability of an amorphous indium-tin-zinc-oxide thin film transistor (a-ITZO TFT): an analytical survey. Nanoscale 2019, 11, 23459–23474. doi:10.1039/c9nr03395e
- Luo, M.; Li, B.-L.; Li, D. Effects of Divacancy and Extended Line Defects on the Thermal Transport Properties of Graphene Nanoribbons. Nanomaterials (Basel, Switzerland) 2019, 9, 1609. doi:10.3390/nano9111609
- Tamersit, K.; Djeffal, F. Boosting the performance of a nanoscale graphene nanoribbon field-effect transistor using graded gate engineering. Journal of Computational Electronics 2018, 17, 1276–1284. doi:10.1007/s10825-018-1209-6
- Kaur, J.; Kumari, A. Impact of source/drain doping concentration on graphene nanoribbon field effect transistor performance. IET Circuits, Devices & Systems 2016, 10, 457–462. doi:10.1049/iet-cds.2016.0094