Cite the Following Article
An adapted Coffey model for studying susceptibility losses in interacting magnetic nanoparticles
Mihaela Osaci and Matteo Cacciola
Beilstein J. Nanotechnol. 2015, 6, 2173–2182.
https://doi.org/10.3762/bjnano.6.223
How to Cite
Osaci, M.; Cacciola, M. Beilstein J. Nanotechnol. 2015, 6, 2173–2182. doi:10.3762/bjnano.6.223
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Osaci, M.; Cacciola, M. A study of Brownian relaxation time in magnetic nanofluids: a semi-analytical model. Multiscale and Multidisciplinary Modeling, Experiments and Design 2023, 7, 15–29. doi:10.1007/s41939-023-00174-9
- Osaci, M.; Cacciola, M. Understanding the Effect of Magnetic Field and Nanoparticle Concentration on Brownian Relaxation Time in Magnetic Nanofluids: A Semi-Analytical Model. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-2625923/v1
- Anand, M. Magnetic relaxation in two dimensional assembly of dipolar interacting nanoparticles. Journal of Magnetism and Magnetic Materials 2022, 552, 169201. doi:10.1016/j.jmmm.2022.169201
- Anand, M. Thermal and dipolar interaction effect on the relaxation in a linear chain of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials 2021, 522, 167538. doi:10.1016/j.jmmm.2020.167538
- Osaci, M.; Cacciola, M. About the influence of the colloidal magnetic nanoparticles coating on the specific loss power in magnetic hyperthermia. Journal of Magnetism and Magnetic Materials 2021, 519, 167451. doi:10.1016/j.jmmm.2020.167451
- Kerroum, M. A. A.; Iacovita, C.; Baaziz, W.; Ihiawakrim, D.; Rogez, G.; Benaissa, M.; Lucaciu, C. M.; Ersen, O. Quantitative Analysis of the Specific Absorption Rate Dependence on the Magnetic Field Strength in Zn x Fe 3−x O 4 Nanoparticles. International journal of molecular sciences 2020, 21, 7775. doi:10.3390/ijms21207775
- Osaci, M.; Cacciola, M. Influence of the magnetic nanoparticle coating on the magnetic relaxation time. Beilstein journal of nanotechnology 2020, 11, 1207–1216. doi:10.3762/bjnano.11.105
- Papadopoulos, C.; Efthimiadou, E. K.; Pissas, M.; Fuentes, D.; Boukos, N.; Psycharis, V.; Kordas, G.; Loukopoulos, V. C.; Kagadis, G. C. Magnetic fluid hyperthermia simulations in evaluation of SAR calculation methods. Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) 2020, 71, 39–52. doi:10.1016/j.ejmp.2020.02.011
- Osaci, M.; Cacciola, M. The influence of the magnetic nanoparticles coating from colloidal system on the magnetic relaxation time. Beilstein Institut 2019, 2019, 154. doi:10.3762/bxiv.2019.154.v1
- Jonasson, C.; Schaller, V.; Zeng, L.; Olsson, E.; Frandsen, C.; Castro, A.; Nilsson, L.; Bogart, L. K.; Southern, P.; Pankhurst, Q. A.; Morales, M. P.; Johansson, C. Modelling the effect of different core sizes and magnetic interactions inside magnetic nanoparticles on hyperthermia performance. Journal of Magnetism and Magnetic Materials 2019, 477, 198–202. doi:10.1016/j.jmmm.2018.09.117
- Smolkova, I. S.; Kazantseva, N. E.; Babayan, V.; Vilčáková, J.; Pizúrová, N.; Saha, P. The Role of Diffusion-Controlled Growth in the Formation of Uniform Iron Oxide Nanoparticles with a Link to Magnetic Hyperthermia. Crystal Growth & Design 2017, 17, 2323–2332. doi:10.1021/acs.cgd.6b01104
- Osaci, M.; Cacciola, M. Specific loss power in superparamagnetic hyperthermia: nanofluid versus composite. IOP Conference Series: Materials Science and Engineering 2017, 163, 012008. doi:10.1088/1757-899x/163/1/012008