Electroviscous effect on fluid drag in a microchannel with large zeta potential

Dalei Jing and Bharat Bhushan
Beilstein J. Nanotechnol. 2015, 6, 2207–2216. https://doi.org/10.3762/bjnano.6.226

Cite the Following Article

Electroviscous effect on fluid drag in a microchannel with large zeta potential
Dalei Jing and Bharat Bhushan
Beilstein J. Nanotechnol. 2015, 6, 2207–2216. https://doi.org/10.3762/bjnano.6.226

How to Cite

Jing, D.; Bhushan, B. Beilstein J. Nanotechnol. 2015, 6, 2207–2216. doi:10.3762/bjnano.6.226

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Dhakar, J.; Bharti, R. P. Analysis of electroviscous effects in electrolyte liquid flow through a heterogeneously charged uniform microfluidic device. Physica Scripta 2024, 99, 105279. doi:10.1088/1402-4896/ad7231
  • Jabeen, N.; Muddasar, M.; Menéndez, N.; Nasiri, M. A.; Gómez, C. M.; Collins, M. N.; Muñoz-Espí, R.; Cantarero, A.; Culebras, M. Recent advances in ionic thermoelectric systems and theoretical modelling. Chemical science 2024, 15, 14122–14153. doi:10.1039/d4sc04158e
  • Dhakar, J.; Bharti, R. P. Influence of contraction ratio on electroviscous flow through the slit-type non-uniform microfluidic device. Physics of Fluids 2024, 36. doi:10.1063/5.0206163
  • Han, C.; Bai, Z.; Sun, H.; Mi, L.; Sun, Z. Bioinspired gradient-structured wood interfaces achieving efficient ion diffusion to generate electricity from natural evaporation. Journal of Materials Chemistry A 2024, 12, 723–730. doi:10.1039/d3ta05986c
  • Dhakar, J.; Bharti, R. P. Electroviscous effects in pressure-driven flow of electrolyte liquid through an asymmetrically charged non-uniform microfluidic device. Journal of the Taiwan Institute of Chemical Engineers 2023, 153, 105230. doi:10.1016/j.jtice.2023.105230
  • He, N.; Wang, H.; Li, F.; Jiang, B.; Tang, D.; Li, L. Ion engines in hydrogels boosting hydrovoltaic electricity generation. Energy & Environmental Science 2023, 16, 2494–2504. doi:10.1039/d2ee03621e
  • Gao, C.; Zhong, S.; Liu, Z.; Li, C. Electrokinetic ion enrichment in asymmetric charged nanochannels. Nanotechnology 2023, 34, 345501. doi:10.1088/1361-6528/acd7f4
  • Li, C.; Zhang, Z.; Li, Z.; Qiao, N.; Liu, Z.; Tian, Z. Q. Electrokinetic energy conversion in nanochannels with surface charge-dependent slip. Electrochimica Acta 2023, 454, 142379. doi:10.1016/j.electacta.2023.142379
  • Chang, L.; Sun, Y.; Buren, M.; Jian, Y. Thermal and Flow Analysis of Fully Developed Electroosmotic Flow in Parallel-Plate Micro- and Nanochannels with Surface Charge-Dependent Slip. Micromachines 2022, 13, 2166. doi:10.3390/mi13122166
  • Banerjee, D.; Pati, S.; Biswas, P. Analysis of electroviscous effect and heat transfer for flow of non-Newtonian fluids in a microchannel with surface charge-dependent slip at high zeta potentials. Physics of Fluids 2022, 34. doi:10.1063/5.0123964
  • Dhakar, J.; Bharti, R. P. Electroviscous effects in charge-dependent slip flow of liquid electrolytes through a charged microfluidic device. Chemical Engineering and Processing - Process Intensification 2022, 180, 109041. doi:10.1016/j.cep.2022.109041
  • Dhakar, J.; Bharti, R. P. Slip Effects in Ionic Liquids Flow Through a Contraction–Expansion Microfluidic Device. Lecture Notes in Mechanical Engineering; Springer Nature Singapore, 2022; pp 149–159. doi:10.1007/978-981-16-6928-6_12
  • Chen, X.; Jian, Y.; Xie, Z. Electrokinetic flow of fluids with pressure-dependent viscosity in a nanotube. Physics of Fluids 2021, 33. doi:10.1063/5.0070938
  • Dutta, M.; Upadhyay, S.; De, S. A facile method to estimate the effective membrane pore charge density through surface zeta potential measurement. Journal of Membrane Science 2021, 637, 119655. doi:10.1016/j.memsci.2021.119655
  • Alan, B. O.; Barisik, M. Size and roughness dependent temperature effects on surface charge of silica nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 629, 127407. doi:10.1016/j.colsurfa.2021.127407
  • Li, C.; Liu, Z.; Liu, X.; Feng, Z.; Mo, X. Combined effect of surface charge and boundary slip on pressure-driven flow and convective heat transfer in nanochannels with overlapping electric double layer. International Journal of Heat and Mass Transfer 2021, 176, 121353. doi:10.1016/j.ijheatmasstransfer.2021.121353
  • Borges, L. S.; Bedin, L.; Bazán, F. S. V. Multidomain Chebyshev pseudo-spectral method applied to the Poisson–Boltzmann equation for two parallel plates. Journal of Engineering Mathematics 2021, 127, 1–24. doi:10.1007/s10665-021-10109-3
  • Rubio-Hernandez, F. J. Electroviscous Effects in Stationary Solid Phase Suspensions. Fluids 2021, 6, 69. doi:10.3390/fluids6020069
  • Sen, T.; Barisik, M. Slip Effects on Ionic Current of Viscoelectric Electroviscous Flows through Different Length Nanofluidic Channels. Langmuir : the ACS journal of surfaces and colloids 2020, 36, 9191–9203. doi:10.1021/acs.langmuir.0c01457
  • Jing, D.; Zhan, X. Cross-Sectional Dimension Dependence of Electroosmotic Flow in Fractal Treelike Rectangular Microchannel Network. Micromachines 2020, 11, 266. doi:10.3390/mi11030266
Other Beilstein-Institut Open Science Activities