Supporting Information
Supporting Information consists of a ZIP archive containing three files: A program manual (Trimodal_AFM_with_Quasi3D_SLS+-+Files+Description.pdf) describing the content of the software files and their usage, the program source file written in C programming language (Trimodal_AFM_with_Quasi3D_SLS.c) and the input file for user-defined parameters (input.txt).
Supporting Information File 1: Program sources and manual. | ||
Format: ZIP | Size: 143.5 KB | Download |
Cite the Following Article
A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy
Santiago D. Solares
Beilstein J. Nanotechnol. 2015, 6, 2233–2241.
https://doi.org/10.3762/bjnano.6.229
How to Cite
Solares, S. D. Beilstein J. Nanotechnol. 2015, 6, 2233–2241. doi:10.3762/bjnano.6.229
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Rajabifar, B.; Wagner, R.; Raman, A. A fast first-principles approach to model atomic force microscopy on soft, adhesive, and viscoelastic surfaces. Materials Research Express 2021, 8, 095304. doi:10.1088/2053-1591/ac1fb7
- Huang, Z.; Wen, P.; Zhou, X. Comparison of Different Excitation Schemes in Bimodal Atomic Force Microscopy in Air and Liquid Environments. Acta Mechanica Solida Sinica 2020, 34, 163–173. doi:10.1007/s10338-020-00203-x
- Czibula, C.; Ganser, C.; Seidlhofer, T.; Teichert, C.; Hirn, U. Transverse viscoelastic properties of pulp fibers investigated with an atomic force microscopy method. Journal of Materials Science 2019, 54, 11448–11461. doi:10.1007/s10853-019-03707-1
- Rajabifar, B.; Jadhav, J. M.; Kiracofe, D.; Meyers, G. F.; Raman, A. Dynamic AFM on viscoelastic polymer samples with surface forces. Macromolecules 2018, 51, 9649–9661. doi:10.1021/acs.macromol.8b01485
- Jahng, J.; Potma, E. O.; Lee, E. S. Tip-Enhanced Thermal Expansion Force for Nanoscale Chemical Imaging and Spectroscopy in Photoinduced Force Microscopy. Analytical chemistry 2018, 90, 11054–11061. doi:10.1021/acs.analchem.8b02871
- López-Guerra, E. A.; Solares, S. D. Material property analytical relations for the case of an AFM probe tapping a viscoelastic surface containing multiple characteristic times. Beilstein journal of nanotechnology 2017, 8, 2230–2244. doi:10.3762/bjnano.8.223
- García, P. D.; Guerrero, C.; Garcia, R. Time-resolved nanomechanics of a single cell under the depolymerization of the cytoskeleton. Nanoscale 2017, 9, 12051–12059. doi:10.1039/c7nr03419a
- López-Guerra, E. A.; Eslami, B.; Solares, S. D. Calculation of standard viscoelastic responses with multiple retardation times through analysis of static force spectroscopy AFM data. Journal of Polymer Science Part B: Polymer Physics 2017, 55, 804–813. doi:10.1002/polb.24327
- Solares, S. D. Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions. Beilstein journal of nanotechnology 2016, 7, 554–571. doi:10.3762/bjnano.7.49