Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents

Jes Ærøe Hyllested, Marta Espina Palanco, Nicolai Hagen, Klaus Bo Mogensen and Katrin Kneipp
Beilstein J. Nanotechnol. 2015, 6, 293–299. https://doi.org/10.3762/bjnano.6.27

Supporting Information

A strong and fluctuating luminescence signal hints to surface-enhanced emission of individual single emitters on the surface of plasmonic silver nanoparticles.

Supporting Information File 1: Fluctuations in the luminescent light collected from green silver nanostructures (real time movie).
Format: WMV Size: 11.2 MB Download

Cite the Following Article

Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents
Jes Ærøe Hyllested, Marta Espina Palanco, Nicolai Hagen, Klaus Bo Mogensen and Katrin Kneipp
Beilstein J. Nanotechnol. 2015, 6, 293–299. https://doi.org/10.3762/bjnano.6.27

How to Cite

Ærøe Hyllested, J.; Espina Palanco, M.; Hagen, N.; Mogensen, K. B.; Kneipp, K. Beilstein J. Nanotechnol. 2015, 6, 293–299. doi:10.3762/bjnano.6.27

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Coman, N.-A.; Nicolae-Maranciuc, A.; Berța, L.; Nicolescu, A.; Babotă, M.; Man, A.; Chicea, D.; Farczadi, L.; Jakab-Farkas, L.; Silva, B.; Veiga-Matos, J.; Tanase, C. Green Synthesis of Metallic Nanoparticles from Quercus Bark Extracts: Characterization and Functional Properties. Antioxidants (Basel, Switzerland) 2024, 13, 822. doi:10.3390/antiox13070822
  • El-Sayed, H.; Abdelsalam, A.; Morad, M. Y.; Sonbol, H.; Ibrahim, A. M.; Tawfik, E. Phyto-synthesized silver nanoparticles from Sargassum subrepandum: anticancer, antimicrobial, and molluscicidal activities. Frontiers in plant science 2024, 15, 1403753. doi:10.3389/fpls.2024.1403753
  • Hussein, S.; Sulaiman, S.; Ali, S.; Pirot, R.; Qurbani, K.; Hamzah, H.; Hassan, O.; Ismail, T.; Ahmed, S. K.; Azizi, Z. Synthesis of Silver Nanoparticles from Aeromonas caviae for Antibacterial Activity and In Vivo Effects in Rats. Biological trace element research 2023, 202, 2764–2775. doi:10.1007/s12011-023-03876-w
  • Rao, P. S.; Ratnam, S.; David, A.; Khatana, R.; Barthwal, A. Nanopriming and Geoinformatics. Nanopriming Approach to Sustainable Agriculture; IGI Global, 2023; pp 193–219. doi:10.4018/978-1-6684-7232-3.ch009
  • Akhatova, F.; Konnova, S.; Kryuchkova, M.; Batasheva, S.; Mazurova, K.; Vikulina, A.; Volodkin, D.; Rozhina, E. Comparative Characterization of Iron and Silver Nanoparticles: Extract-Stabilized and Classical Synthesis Methods. International journal of molecular sciences 2023, 24, 9274. doi:10.3390/ijms24119274
  • Ramírez-Hernández, M. J.; Valera-Zaragoza, M.; Viñas-Bravo, O.; Huerta-Heredia, A. A.; Peña-Rico, M. A.; Juarez-Arellano, E. A.; Paniagua-Vega, D.; Ramírez-Vargas, E.; Sánchez-Valdes, S. In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles. Beilstein journal of nanotechnology 2022, 13, 1505–1519. doi:10.3762/bjnano.13.124
  • Qadri, T.; Khan, S.; Begum, I.; Ahmed, S.; Shah, Z. A.; Ali, I.; Ahmed, F.; Hussain, M.; Hussain, Z.; Rahim, S.; Shah, M. R. Synthesis of phenylbenzotriazole derivative stabilized silver nanoparticles for chromium (III) detection in tap water. Journal of Molecular Structure 2022, 1267, 133589. doi:10.1016/j.molstruc.2022.133589
  • Khan, F.; Pandey, P.; Upadhyay, T. K. Applications of Nanotechnology-Based Agrochemicals in Food Security and Sustainable Agriculture: An Overview. Agriculture 2022, 12, 1672. doi:10.3390/agriculture12101672
  • Pérez-Marroquín, X. A.; Aguirre-Cruz, G.; Campos-Lozada, G.; Callejas-Quijada, G.; León-López, A.; Campos-Montiel, R. G.; García-Hernández, L.; Méndez-Albores, A.; Vázquez-Durán, A.; Aguirre-Álvarez, G. Green Synthesis of Silver Nanoparticles for Preparation of Gelatin Films with Antimicrobial Activity. Polymers 2022, 14, 3453. doi:10.3390/polym14173453
  • Al-Radadi, N. S.; Abu-Dief, A. M. Silver nanoparticles (AgNPs) as a metal nano-therapy: possible mechanisms of antiviral action against COVID-19. Inorganic and Nano-Metal Chemistry 2022, 1–19. doi:10.1080/24701556.2022.2068585
  • Dzhagan, V.; Smirnov, O.; Kovalenko, M.; Mazur, N.; Hreshchuk, O.; Taran, N.; Plokhovska, S.; Pirko, Y.; Yemets, A.; Yukhymchuk, V.; Zahn, D. R. T. Spectroscopic Study of Phytosynthesized Ag Nanoparticles and Their Activity as SERS Substrate. Chemosensors 2022, 10, 129. doi:10.3390/chemosensors10040129
  • Karthik, C.; Punnaivalavan, K. A.; Prabha, S. P.; Caroline, D. G. Multifarious global flora fabricated phytosynthesis of silver nanoparticles: a green nanoweapon for antiviral approach including SARS-CoV-2. International nano letters 2022, 12, 313–344. doi:10.1007/s40089-022-00367-z
  • Onuoha, P. N.; Oganezi, N. C.; Okoronkwo, C. U.; Nkiruka, U. L.; Onwualu, P. A. Comparison of Antioxidant Activities of Silver Nanoparticles and Methanol Extracts of Three Indigenous Nigeria Herbal Seeds. Food and Nutrition Sciences 2022, 13, 702–719. doi:10.4236/fns.2022.137051
  • Das, S.; Tiwari, D. K. Biogenic Synthesis of Nanomaterials Toward Environment-Friendly Approach. Microorganisms for Sustainability; Springer Singapore, 2021; pp 121–151. doi:10.1007/978-981-16-1947-2_6
  • Siddiqui, S.; Alrumman, S. A. Influence of nanoparticles on food: An analytical assessment. Journal of King Saud University - Science 2021, 33, 101530. doi:10.1016/j.jksus.2021.101530
  • Goswami, D.; Mula, S. Green Chemistry Approach for Synthesis of Materials. Indian Institute of Metals Series; Springer Singapore, 2021; pp 557–588. doi:10.1007/978-981-16-1807-9_17
  • Antropova, I. G.; Revina, A. A.; Oo, P. M.; Kurakina, E. S.; Butorova, I. A.; Magomedbekov, E. P. Synthesis of Silver Nanoparticles Using Reactive Water-Ethanol Extracts from Murraya paniculata. ACS omega 2021, 6, 8313–8321. doi:10.1021/acsomega.1c00019
  • Ojemaye, M. O.; Okoh, S. O.; Okoh, A. I. Silver nanoparticles (AgNPs) facilitated by plant parts of Crataegus ambigua Becker AK extracts and their antibacterial, antioxidant and antimalarial activities. Green Chemistry Letters and Reviews 2020, 14, 51–61. doi:10.1080/17518253.2020.1861344
  • Raghava, S.; Mbae, K. M.; Umesha, S. Green synthesis of silver nanoparticles by Rivina humilis leaf extract to tackle growth of Brucella species and other perilous pathogens. Saudi journal of biological sciences 2020, 28, 495–503. doi:10.1016/j.sjbs.2020.10.034
  • Larayetan, R.; Yahaya, A.; Ayeni, G.; Moronkola, B. A. Biogenic Synthesis, Characterization, Toxicity Assessment, Antiparasitic and Antibacterial Activities of Silver Nanoparticles from Lippia multiflora. Green Synthesis of Nanoparticles: Applications and Prospects; Springer Singapore, 2020; pp 273–287. doi:10.1007/978-981-15-5179-6_12
Other Beilstein-Institut Open Science Activities