A surface acoustic wave-driven micropump for particle uptake investigation under physiological flow conditions in very small volumes

Florian G. Strobl, Dominik Breyer, Phillip Link, Adriano A. Torrano, Christoph Bräuchle, Matthias F. Schneider and Achim Wixforth
Beilstein J. Nanotechnol. 2015, 6, 414–419. https://doi.org/10.3762/bjnano.6.41

Cite the Following Article

A surface acoustic wave-driven micropump for particle uptake investigation under physiological flow conditions in very small volumes
Florian G. Strobl, Dominik Breyer, Phillip Link, Adriano A. Torrano, Christoph Bräuchle, Matthias F. Schneider and Achim Wixforth
Beilstein J. Nanotechnol. 2015, 6, 414–419. https://doi.org/10.3762/bjnano.6.41

How to Cite

Strobl, F. G.; Breyer, D.; Link, P.; Torrano, A. A.; Bräuchle, C.; Schneider, M. F.; Wixforth, A. Beilstein J. Nanotechnol. 2015, 6, 414–419. doi:10.3762/bjnano.6.41

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Barai, B.; Boorgula, K.; Begam, H.; Sarkar, S.; Barui, A.; Kundu, S.; Oraon, B.; Mandal, T. Multiphysics simulation and experimental investigation of HA and Zn-doped HA coatings on magnesium alloys for resorbable implant applications. Materials Today Communications 2025, 42, 111241. doi:10.1016/j.mtcomm.2024.111241
  • Baumgartner, K.; Täufer, P.; Lienhart, M.; Lienhart, R.; Westerhausen, C. Pulsed surface acoustic waves accelerate wound healing and reveal new parameter limits for cell stimulation in vitro. Journal of Physics D: Applied Physics 2024, 57, 155401. doi:10.1088/1361-6463/ad18fa
  • Brugger, M. S.; Baumgartner, K.; Mauritz, S. C. F.; Gerlach, S. C.; Röder, F.; Schlosser, C.; Fluhrer, R.; Wixforth, A.; Westerhausen, C. Vibration enhanced cell growth induced by surface acoustic waves as in vitro wound-healing model. Proceedings of the National Academy of Sciences of the United States of America 2020, 117, 31603–31613. doi:10.1073/pnas.2005203117
  • Jusková, P.; Matthys, L.; Viovy, J.-L.; Malaquin, L. 3D deterministic lateral displacement (3D-DLD) cartridge system for high throughput particle sorting. Chemical communications (Cambridge, England) 2020, 56, 5190–5193. doi:10.1039/c9cc05858c
  • Mora-Espí, I.; Ibáñez, E.; Soriano, J.; Nogués, C.; Gudjonsson, T.; Barrios, L. Cell Internalization in Fluidic Culture Conditions Is Improved When Microparticles Are Specifically Targeted to the Human Epidermal Growth Factor Receptor 2 (HER2). Pharmaceutics 2019, 11, 177. doi:10.3390/pharmaceutics11040177
  • Wu, W. A pressure-driven gas-diffusion/permeation micropump for self-activated sample transport in an extreme micro-environment. The Analyst 2018, 143, 4819–4835. doi:10.1039/c8an01120f
  • Stamp, M. E.; Westerhausen, C.; Tong, W.; Prawer, S.; Garrett, D. J.; Wixforth, A. Acoustic Streaming Driven Enhanced Dye-Uptake in Cells for Fluorescence Imaging. In 2018 IEEE International Ultrasonics Symposium (IUS), IEEE, 2018; pp 206–212. doi:10.1109/ultsym.2018.8579948
  • Gomez-Garcia, M. J.; Doiron, A. L.; Steele, R. R.; Labouta, H. I.; Vafadar, B.; Shepherd, R. D.; Gates, I. D.; Cramb, D. T.; Childs, S. J.; Rinker, K. D. Nanoparticle localization in blood vessels: dependence on fluid shear stress, flow disturbances, and flow-induced changes in endothelial physiology. Nanoscale 2018, 10, 15249–15261. doi:10.1039/c8nr03440k
  • Wang, Y. N.; Fu, L.-M. Micropumps and biomedical applications – A review. Microelectronic Engineering 2018, 195, 121–138. doi:10.1016/j.mee.2018.04.008
  • Connacher, W.; Zhang, N.; Huang, A.; Mei, J.; Zhang, S.; Gopesh, T.; Friend, J. Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications. Lab on a chip 2018, 18, 1952–1996. doi:10.1039/c8lc00112j
  • Gray, K. M.; Stroka, K. M. Vascular endothelial cell mechanosensing: New insights gained from biomimetic microfluidic models. Seminars in cell & developmental biology 2017, 71, 106–117. doi:10.1016/j.semcdb.2017.06.002
  • Feliu, N.; Sun, X.; Puebla, R. A. A.; Parak, W. J. Quantitative Particle–Cell Interaction: Some Basic Physicochemical Pitfalls. Langmuir : the ACS journal of surfaces and colloids 2017, 33, 6639–6646. doi:10.1021/acs.langmuir.6b04629
  • Stamp, M. E. M.; Jötten, A. M.; Kudella, P. W.; Breyer, D.; Strobl, F. G.; Geislinger, T. M.; Wixforth, A.; Westerhausen, C. Exploring the Limits of Cell Adhesion under Shear Stress within Physiological Conditions and beyond on a Chip. Diagnostics (Basel, Switzerland) 2016, 6, 38. doi:10.3390/diagnostics6040038
  • Destgeer, G.; Cho, H.; Ha, B. H.; Jung, J. H.; Park, J.; Sung, H. J. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. Lab on a chip 2016, 16, 660–667. doi:10.1039/c5lc01104c
  • Muoth, C.; Rottmar, M.; Schipanski, A.; Gmuender, C.; Maniura-Weber, K.; Wick, P.; Buerki-Thurnherr, T. A micropatterning approach to study the influence of actin cytoskeletal organization on polystyrene nanoparticle uptake by BeWo cells. RSC Advances 2016, 6, 72827–72835. doi:10.1039/c6ra13782b
  • Destgeer, G.; Sung, H. J. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. Lab on a chip 2015, 15, 2722–2738. doi:10.1039/c5lc00265f
  • Torrano, A. A.; Bräuchle, C. Precise quantification of silica and ceria nanoparticle uptake revealed by 3D fluorescence microscopy. Beilstein journal of nanotechnology 2014, 5, 1616–1624. doi:10.3762/bjnano.5.173
  • Gomez, M. J. Ph.D. Thesis, . doi:10.11575/prism/26195

Patents

  • YEO LESLIE; AMBATTU LIZEBONA AUGUST. METHODS OF ENHANCING ENDOTHELIAL BARRIER INTEGRITY. WO 2024092321 A1, May 10, 2024.
Other Beilstein-Institut Open Science Activities