Supporting Information
Supporting Information File 1: Additional experimental data. | ||
Format: PDF | Size: 579.9 KB | Download |
Cite the Following Article
Fundamental edge broadening effects during focused electron beam induced nanosynthesis
Roland Schmied, Jason D. Fowlkes, Robert Winkler, Phillip D. Rack and Harald Plank
Beilstein J. Nanotechnol. 2015, 6, 462–471.
https://doi.org/10.3762/bjnano.6.47
How to Cite
Schmied, R.; Fowlkes, J. D.; Winkler, R.; Rack, P. D.; Plank, H. Beilstein J. Nanotechnol. 2015, 6, 462–471. doi:10.3762/bjnano.6.47
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Hari, S.; van Dorp, W. F.; Mulders, J. J. L.; Trompenaars, P. H. F.; Kruit, P.; Hagen, C. W. Sidewall angle tuning in focused electron beam-induced processing. Beilstein journal of nanotechnology 2024, 15, 447–456. doi:10.3762/bjnano.15.40
- Chapman, G.; Masteghin, M. G.; Cox, D. C.; Clowes, S. K. Focused electron beam deposited silicon dioxide derivatives for nano-electronic applications. Materials Science in Semiconductor Processing 2022, 147, 106736. doi:10.1016/j.mssp.2022.106736
- Weitzer, A.; Huth, M.; Kothleitner, G.; Plank, H. Expanding FEBID-Based 3D-Nanoprinting toward Closed High-Fidelity Nanoarchitectures. ACS Applied Electronic Materials 2022, 4, 744–754. doi:10.1021/acsaelm.1c01133
- Magén, C.; Pablo-Navarro, J.; de Teresa, J. M. Focused-Electron-Beam Engineering of 3D Magnetic Nanowires. Nanomaterials (Basel, Switzerland) 2021, 11, 402. doi:10.3390/nano11020402
- Kuhness, D.; Gruber, A.; Winkler, R.; Sattelkow, J.; Fitzek, H. M.; Letofsky-Papst, I.; Kothleitner, G.; Plank, H. High-Fidelity 3D Nanoprinting of Plasmonic Gold Nanoantennas. ACS applied materials & interfaces 2020, 13, 1178–1191. doi:10.1021/acsami.0c17030
- de Vera, P.; Azzolini, M.; Sushko, G. B.; Abril, I.; Garcia-Molina, R.; Dapor, M.; Solov'yov, I. A.; Solov’yov, A. V. Multiscale simulation of the focused electron beam induced deposition process. Scientific reports 2020, 10, 20827. doi:10.1038/s41598-020-77120-z
- Rohdenburg, M.; Winkler, R.; Kuhness, D.; Plank, H.; Swiderek, P. Water-Assisted Process for Purification of Ruthenium Nanomaterial Fabricated by Electron Beam Induced Deposition. ACS Applied Nano Materials 2020, 3, 8352–8364. doi:10.1021/acsanm.0c01759
- de Teresa, J. M.; Orús, P.; Córdoba, R.; Philipp, P. Comparison between Focused Electron/Ion Beam-Induced Deposition at Room Temperature and under Cryogenic Conditions. Micromachines 2019, 10, 799. doi:10.3390/mi10120799
- Pablo-Navarro, J.; Sangiao, S.; Magén, C.; de Teresa, J. M. Diameter modulation of 3D nanostructures in focused electron beam induced deposition using local electric fields and beam defocus. Nanotechnology 2019, 30, 505302. doi:10.1088/1361-6528/ab423c
- Winkler, R.; Fowlkes, J. D.; Rack, P. D.; Plank, H. 3D nanoprinting via focused electron beams. Journal of Applied Physics 2019, 125, 210901. doi:10.1063/1.5092372
- Lee, K.-I.; Lee, H.-T.; Jang, K.-H.; Ahn, S.-H. Simulation of dynamic growth rate of focused ion beam-induced deposition using Hausdorff distance. Sensors and Actuators A: Physical 2019, 286, 169–177. doi:10.1016/j.sna.2018.12.030
- Arnold, G.; Winkler, R.; Stermitz, M.; Orthacker, A.; Noh, J.; Fowlkes, J. D.; Kothleitner, G.; Huth, M.; Rack, P. D.; Plank, H. Tunable 3D Nanoresonators for Gas-Sensing Applications. Advanced Functional Materials 2018, 28, 1707387. doi:10.1002/adfm.201707387
- Thorman, R. M.; Unlu, I.; Johnson, K. R.; Bjornsson, R.; McElwee-White, L.; Fairbrother, D. H.; Ingólfsson, O. Low energy electron-induced decomposition of (η5-Cp)Fe(CO)2Mn(CO)5, a potential bimetallic precursor for focused electron beam induced deposition of alloy structures. Physical chemistry chemical physics : PCCP 2018, 20, 5644–5656. doi:10.1039/c7cp06705d
- Winkler, R.; Lewis, B. B.; Fowlkes, J. D.; Rack, P. D.; Plank, H. High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Growth Fundamentals. ACS Applied Nano Materials 2018, 1, 1014–1027. doi:10.1021/acsanm.8b00158
- Thorman, R. M.; Brannaka, J. A.; McElwee-White, L.; Ingólfsson, O. Low energy electron-induced decomposition of (η3-C3H5)Ru(CO)3Br, a potential focused electron beam induced deposition precursor with a heteroleptic ligand set. Physical chemistry chemical physics : PCCP 2017, 19, 13264–13271. doi:10.1039/c7cp01696d
- Moczaa, M.; Kwoka, K.; Piasecki, T.; Kunicki, P.; Sierakowski, A.; Gotszalk, T. Fabrication and characterization of micromechanical bridges with strain sensors deposited using focused electron beam induced technology. Microelectronic Engineering 2017, 176, 111–115. doi:10.1016/j.mee.2017.03.009
- Hernández-Martínez, A. R.; Torres, D.; Molina, G. A.; Esparza, R.; Quintanilla, F.; Martínez-Bustos, F.; Estevez, M. Stability comparison between microencapsulated red-glycosidic pigments and commercial FD&C Red 40 dye for food coloring. Journal of Materials Science 2017, 52, 5014–5026. doi:10.1007/s10853-016-0739-1
- Winkler, R.; Schmidt, F.-P.; Haselmann, U.; Fowlkes, J. D.; Lewis, B. B.; Kothleitner, G.; Rack, P. D.; Plank, H. Direct-Write 3D Nanoprinting of Plasmonic Structures. ACS applied materials & interfaces 2016, 9, 8233–8240. doi:10.1021/acsami.6b13062
- Ganner, T.; Sattelkow, J.; Rumpf, B.; Eibinger, M.; Reishofer, D.; Winkler, R.; Nidetzky, B.; Spirk, S.; Plank, H. Direct-Write Fabrication of Cellulose Nano-Structures via Focused Electron Beam Induced Nanosynthesis. Scientific reports 2016, 6, 32451. doi:10.1038/srep32451
- Jesse, S.; Borisevich, A. Y.; Fowlkes, J. D.; Lupini, A. R.; Rack, P. D.; Unocic, R. R.; Sumpter, B. G.; Kalinin, S. V.; Belianinov, A.; Ovchinnikova, O. S. Directing Matter: Toward Atomic-Scale 3D Nanofabrication. ACS nano 2016, 10, 5600–5618. doi:10.1021/acsnano.6b02489