Hollow plasmonic antennas for broadband SERS spectroscopy

Gabriele C. Messina, Mario Malerba, Pierfrancesco Zilio, Ermanno Miele, Michele Dipalo, Lorenzo Ferrara and Francesco De Angelis
Beilstein J. Nanotechnol. 2015, 6, 492–498. https://doi.org/10.3762/bjnano.6.50

Cite the Following Article

Hollow plasmonic antennas for broadband SERS spectroscopy
Gabriele C. Messina, Mario Malerba, Pierfrancesco Zilio, Ermanno Miele, Michele Dipalo, Lorenzo Ferrara and Francesco De Angelis
Beilstein J. Nanotechnol. 2015, 6, 492–498. https://doi.org/10.3762/bjnano.6.50

How to Cite

Messina, G. C.; Malerba, M.; Zilio, P.; Miele, E.; Dipalo, M.; Ferrara, L.; De Angelis, F. Beilstein J. Nanotechnol. 2015, 6, 492–498. doi:10.3762/bjnano.6.50

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Mandelbaum, Y.; Tkachev, M.; Sanjeev, A.; Zalevsky, Z.; Zitoun, D.; Karsenty, A. Tips versus Holes: ×10 Higher Scattering in FIB-made Plasmonic Nanoscale Arrays for Spectral Imaging. ACS Omega 2024, 9, 46796–46812. doi:10.1021/acsomega.4c04775
  • Odetade, D. F.; Rickard, J. J. S.; Goldberg Oppenheimer, P. Development and Optimization of Micro‐Nanotopographical Platforms for Surface Enhanced Raman Scattering Biomolecular Detection. Advanced Materials Interfaces 2024. doi:10.1002/admi.202400352
  • Dixon, K.; Zhu, X.; Chen, L.; Montazeri, A.; Matsuura, N.; Kherani, N. P.; Holman, H. N. Dispersion‐Engineered Deep Sub‐Wavelength Plasmonic Metasurfaces for Broadband Seira Applications. Advanced Optical Materials 2023, 12. doi:10.1002/adom.202300979
  • Caprettini, V.; Chiappini, C. Semiconducting Silicon Nanowires for Biomedical Applications - Nanoneedle devices for biomedicine. Semiconducting Silicon Nanowires for Biomedical Applications; Elsevier, 2022; pp 181–206. doi:10.1016/b978-0-12-821351-3.00012-4
  • Farid, S.; Dixon, K.; Shayegannia, M.; Ko, R. H. H.; Safari; Loh, J. Y. Y.; Kherani, N. P. Rainbows at the End of Subwavelength Discontinuities: Plasmonic Light Trapping for Sensing Applications. Advanced Optical Materials 2021, 9, 2100695. doi:10.1002/adom.202100695
  • Abraham-Ekeroth, R. M. Radioplasmonics: Design of Metamaterial Milli-particles in Air and Absorbing Media for Antenna Communication and Human-Body In Vivo Applications. Plasmonics 2021, 16, 2179–2191. doi:10.1007/s11468-021-01471-0
  • Abraham-Ekeroth, R. M. Radioplasmonics: Design of Metamaterial Milli-particles in Air and Absorbing Media for Antenna Communication and Human-Body In Vivo Applications. Plasmonics 2021, 16, 1–13.
  • Abraham-Ekeroth, R. M. Radioplasmonics: design of plasmonic milli-particles in air and absorbing media for antenna communication and human-body in-vivo applications. 2021.
  • Narasimhan, V.; Siddique, R. H.; Park, H.; Choo, H. Bioinspired Disordered Flexible Metasurfaces for Human Tear Analysis Using Broadband Surface-Enhanced Raman Scattering. ACS omega 2020, 5, 12915–12922. doi:10.1021/acsomega.0c00677
  • Fan, M.; Andrade, G. F. S.; Brolo, A. G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Analytica chimica acta 2019, 1097, 1–29. doi:10.1016/j.aca.2019.11.049
  • Herth, E.; Edmond, S.; Bouville, D.; Cercus, J. L.; Bayle, F.; Cambril, E. Micro/Nanopillars for Micro‐ and Nanotechnologies Using Inductively Coupled Plasmas. physica status solidi (a) 2019, 216, 1900324. doi:10.1002/pssa.201900324
  • Khoshdel, V.; Shokooh-Saremi, M. Increased electric field enhancement and broad wavelength tunability by plasmonic bow-tie nano-antenna based on fractal geometry with grid. Photonics and Nanostructures - Fundamentals and Applications 2019, 35, 100705. doi:10.1016/j.photonics.2019.100705
  • Tran, N.-L.; Malerba, M.; Talneau, A.; Biasiol, G.; Ouznali, O.; Bousseksou, A.; Manceau, J.-M.; Colombelli, R. III-V on CaF2: a possible waveguiding platform for mid-IR photonic devices. Optics express 2019, 27, 1672–1682. doi:10.1364/oe.27.001672
  • Caprettini, V.; Huang, J.-A.; Moia, F.; Jacassi, A.; Gonano, C. A.; Maccaferri, N.; Capozza, R.; Dipalo, M.; De Angelis, F. Enhanced Raman Investigation of Cell Membrane and Intracellular Compounds by 3D Plasmonic Nanoelectrode Arrays. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2018, 5, 1800560. doi:10.1002/advs.201800560
  • Wang, Z.; Zong, S.; Wu, L.; Zhu, D.; Cui, Y. SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chemical reviews 2017, 117, 7910–7963. doi:10.1021/acs.chemrev.7b00027
  • Kumara, N. T. R. N.; Chau, Y.-F. C.; Huang, J.-W.; Huang, H. J.; Lin, C.-T.; Chiang, H.-P. Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications. Journal of Optics 2016, 18, 115003. doi:10.1088/2040-8978/18/11/115003
  • Chau, Y.-F. C.; Chao, C.-T. C.; Rao, J.-Y.; Chiang, H.-P.; Lim, C. M.; Lim, R. C.; Voo, N. Y. Tunable Optical Performances on a Periodic Array of Plasmonic Bowtie Nanoantennas with Hollow Cavities. Nanoscale research letters 2016, 11, 411. doi:10.1186/s11671-016-1636-x
  • Rafiq, S.; Scholes, G. D. Slow Intramolecular Vibrational Relaxation Leads to Long-Lived Excited-State Wavepackets. The journal of physical chemistry. A 2016, 120, 6792–6799. doi:10.1021/acs.jpca.6b07796
  • Wang, L.; Zhang, Y.; Zhang, W.; Ren, T.; Wang, F.; Yang, H. Laser-induced plasmonic heating on silver nanoparticles/poly(N-isopropylacrylamide) mats for optimizing SERS detection. Journal of Raman Spectroscopy 2016, 48, 243–250. doi:10.1002/jrs.5012
  • Caprettini, V.; Dipalo, M.; Messina, G.; Lovato, L.; Tantussi, F.; De Angelis, F. 3D plasmonic nanostructures for in-vitro applications in neuroscience and cell biology. In 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO), IEEE, 2016; pp 491–493. doi:10.1109/nano.2016.7751315
Other Beilstein-Institut Open Science Activities