Supporting Information
See Supporting Information for the Raman spectra of the different graphene materials (exfoliated, graphene on the C-face of SiC, turbostratic micro-discs deposited on SiO2); the AFM characterization of the graphene grown on SiC; additional details about the fitting procedure of the non linear I–V curves according to the Simmons model.
Supporting Information File 1: Titel: Material characterization. | ||
Format: PDF | Size: 384.4 KB | Download |
Cite the Following Article
Electroburning of few-layer graphene flakes, epitaxial graphene, and turbostratic graphene discs in air and under vacuum
Andrea Candini, Nils Richter, Domenica Convertino, Camilla Coletti, Franck Balestro, Wolfgang Wernsdorfer, Mathias Kläui and Marco Affronte
Beilstein J. Nanotechnol. 2015, 6, 711–719.
https://doi.org/10.3762/bjnano.6.72
How to Cite
Candini, A.; Richter, N.; Convertino, D.; Coletti, C.; Balestro, F.; Wernsdorfer, W.; Kläui, M.; Affronte, M. Beilstein J. Nanotechnol. 2015, 6, 711–719. doi:10.3762/bjnano.6.72
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Evangeli, C.; Swett, J.; Spiece, J.; McCann, E.; Fried, J.; Harzheim, A.; Lupini, A. R.; Briggs, G. A. D.; Gehring, P.; Jesse, S.; Kolosov, O. V.; Mol, J. A.; Dyck, O. Thermoelectric Limitations of Graphene Nanodevices at Ultrahigh Current Densities. ACS nano 2024, 18, 11153–11164. doi:10.1021/acsnano.3c12930
- Evangeli, C.; Tewari, S.; Kruip, J. M.; Bian, X.; Swett, J. L.; Cully, J.; Thomas, J.; Briggs, G. A. D.; Mol, J. A. Statistical signature of electrobreakdown in graphene nanojunctions. Proceedings of the National Academy of Sciences of the United States of America 2022, 119, e2119015119. doi:10.1073/pnas.2119015119
- Nie, H.; Zhao, C.; Shi, Z.; Jia, C.; Guo, X. Single-Molecule Fullerenes: Current Stage and Perspective. ACS Materials Letters 2022, 4, 1037–1052. doi:10.1021/acsmaterialslett.2c00247
- Chen, Z.; Narita, A.; Müllen, K. Graphene Nanoribbons: On-Surface Synthesis and Integration into Electronic Devices. Advanced materials (Deerfield Beach, Fla.) 2020, 32, 2001893. doi:10.1002/adma.202001893
- Gaulandris, F.; Simonsen, S. B.; Wagner, J. B.; Mølhave, K.; Muto, S.; Kuhn, L. T. Methods for Calibration of Specimen Temperature During In Situ Transmission Electron Microscopy Experiments. Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada 2020, 26, 3–17. doi:10.1017/s1431927619015344
- Chen, B.; Xu, K. Single Molecule-Based Electronic Devices: A Review. Nano 2019, 14, 1930007. doi:10.1142/s179329201930007x
- Gehring, P.; Thijssen, J.; van der Zant, H. S. J. Single-molecule quantum-transport phenomena in break junctions. Nature Reviews Physics 2019, 1, 381–396. doi:10.1038/s42254-019-0055-1
- Martini, L.; Chen, Z.; Mishra, N.; Barin, G. B.; Fantuzzi, P.; Ruffieux, P.; Fasel, R.; Feng, X.; Narita, A.; Coletti, C.; Müllen, K.; Candini, A. Structure-dependent electrical properties of graphene nanoribbon devices with graphene electrodes. Carbon 2019, 146, 36–43. doi:10.1016/j.carbon.2019.01.071
- Maurice, A.; Bodelot, L.; Tay, B. K.; Lebental, B. Controlled, Low-Temperature Nanogap Propagation in Graphene Using Femtosecond Laser Patterning. Small (Weinheim an der Bergstrasse, Germany) 2018, 14, 1801348. doi:10.1002/smll.201801348
- Harzheim, A. Thermoelectricity in single-molecule devices. Materials Science and Technology 2018, 34, 1275–1286. doi:10.1080/02670836.2018.1449178
- Tomadin, A.; Hornett, S. M.; Wang, H. I.; Alexeev, E. M.; Candini, A.; Coletti, C.; Turchinovich, D.; Klaeui, M.; Bonn, M.; Koppens, F. H. L.; Hendry, E.; Polini, M.; Tielrooij, K.-J. The ultrafast dynamics and conductivity of photoexcited graphene at different Fermi energies. Science advances 2018, 4, eaar5313. doi:10.1126/sciadv.aar5313
- Candini, A.; Lumetti, S.; Godfrin, C.; Balestro, F.; Wernsdorfer, W.; Klyatskaya, S.; Ruben, M.; Affronte, M. Addressing a Single Molecular Spin with Graphene-Based Nanoarchitectures. Advances in Atom and Single Molecule Machines; Springer International Publishing, 2017; pp 165–184. doi:10.1007/978-3-319-57096-9_8
- Richter, N.; Chen, Z.; Braatz, M.-L.; Musseau, F.; Weber, N.-E.; Narita, A.; Müllen, K.; Kläui, M. Dimensional Confinement in Carbon‐based Structures – From 3D to 1D. Annalen der Physik 2017, 529, 1700051. doi:10.1002/andp.201700051
- Candini, A.; Martini, L.; Chen, Z.; Mishra, N.; Convertino, D.; Coletti, C.; Narita, A.; Feng, X.; Müllen, K.; Affronte, M. High Photoresponsivity in Graphene Nanoribbon Field-Effect Transistor Devices Contacted with Graphene Electrodes. The Journal of Physical Chemistry C 2017, 121, 10620–10625. doi:10.1021/acs.jpcc.7b03401
- Lumetti, S.; Martini, L.; Candini, A. Fabrication and characterization of nanometer-sized gaps in suspended few-layer graphene devices. Semiconductor Science and Technology 2017, 32, 024002. doi:10.1088/1361-6641/32/2/024002
- Lumetti, S.; Candini, A.; Godfrin, C.; Balestro, F.; Wernsdorfer, W.; Klyatskaya, S.; Ruben, M.; Affronte, M. Single-molecule devices with graphene electrodes. Dalton transactions (Cambridge, England : 2003) 2016, 45, 16570–16574. doi:10.1039/c6dt02445a
- Fantuzzi, P.; Martini, L.; Candini, A.; Corradini, V.; del Pennino, U.; Hu, Y.; Feng, X.; Müllen, K.; Narita, A.; Affronte, M. Fabrication of three terminal devices by ElectroSpray deposition of graphene nanoribbons. Carbon 2016, 104, 112–118. doi:10.1016/j.carbon.2016.03.052
- Lee, J.-i.; Jang, S. J.; Cho, S.; Kim, E. Evolution of various quantum transport properties in a suspended disordered graphene device by the high bias voltage exposure. Current Applied Physics 2016, 16, 731–737. doi:10.1016/j.cap.2016.04.006
- Convertino, D.; Rossi, A.; Miseikis, V.; Piazza, V.; Coletti, C. Thermal decomposition and chemical vapor deposition: a comparative study of multi-layer growth of graphene on SiC(000-1). MRS Advances 2016, 1, 3667–3672. doi:10.1557/adv.2016.369
Patents
- MANCEVSKI VLADIMIR. DEVICE, METHOD, AND CARBON PILL FOR SYNTHESIZING GRAPHENE. WO 2021068087 A1, April 15, 2021.