Combination of surface- and interference-enhanced Raman scattering by CuS nanocrystals on nanopatterned Au structures

Alexander G. Milekhin, Nikolay A. Yeryukov, Larisa L. Sveshnikova, Tatyana A. Duda, Ekaterina E. Rodyakina, Victor A. Gridchin, Evgeniya S. Sheremet and Dietrich R. T. Zahn
Beilstein J. Nanotechnol. 2015, 6, 749–754. https://doi.org/10.3762/bjnano.6.77

Cite the Following Article

Combination of surface- and interference-enhanced Raman scattering by CuS nanocrystals on nanopatterned Au structures
Alexander G. Milekhin, Nikolay A. Yeryukov, Larisa L. Sveshnikova, Tatyana A. Duda, Ekaterina E. Rodyakina, Victor A. Gridchin, Evgeniya S. Sheremet and Dietrich R. T. Zahn
Beilstein J. Nanotechnol. 2015, 6, 749–754. https://doi.org/10.3762/bjnano.6.77

How to Cite

Milekhin, A. G.; Yeryukov, N. A.; Sveshnikova, L. L.; Duda, T. A.; Rodyakina, E. E.; Gridchin, V. A.; Sheremet, E. S.; Zahn, D. R. T. Beilstein J. Nanotechnol. 2015, 6, 749–754. doi:10.3762/bjnano.6.77

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Oppong-Antwi, L.; Gunawan, D.; Toe, C. Y.; Yao, Y.; Valanoor, N.; Hart, J. N. Cu S films as photoelectrodes for visible-light water splitting. Materials Science in Semiconductor Processing 2024, 184, 108833. doi:10.1016/j.mssp.2024.108833
  • Jones, M. D. K.; Willis, B. L.; Campbell, S.; Kartopu, G.; Maiello, P.; Punathil, P.; Cheung, W. M.; Woolley, E.; Jones, L. C. R.; Oklobia, O.; Holland, A.; Barrioz, V.; Zoppi, G.; Beattie, N. S.; Qu, Y. Ecodesign of Kesterite Nanoparticles for Thin Film Photovoltaics at Laboratory Scale. ACS sustainable chemistry & engineering 2024, 12, 11613–11627. doi:10.1021/acssuschemeng.4c02841
  • Ait-karra, A.; Zakir, O.; Mourak, A.; Elouakassi, N.; Almaggoussi, A.; Idouhli, R.; Abouelfida, A.; Khadiri, M.; Benzakour, J. Elaboration of CuS nanomaterials via hydrothermal route: Examining physical properties and photocatalytic potential. Journal of Physics and Chemistry of Solids 2024, 185, 111771. doi:10.1016/j.jpcs.2023.111771
  • Kurus, N. N.; Kalinin, V.; Nebogatikova, N. A.; Milekhin, I. A.; Antonova, I. V.; Rodyakina, E. E.; Milekhin, A. G.; Latyshev, A. V.; Zahn, D. R. T. Resonant Raman scattering on graphene: SERS and gap-mode TERS. RSC advances 2024, 14, 3667–3674. doi:10.1039/d3ra07018b
  • Wang, Y.; Xu, H.; Liu, Y.; Jang, J.; Qiu, X.; Delmo, E. P.; Zhao, Q.; Gao, P.; Shao, M. A Sulfur‐Doped Copper Catalyst with Efficient Electrocatalytic Formate Generation during the Electrochemical Carbon Dioxide Reduction Reaction. Angewandte Chemie 2024, 136. doi:10.1002/ange.202313858
  • Wang, Y.; Xu, H.; Liu, Y.; Jang, J.; Qiu, X.; Delmo, E. P.; Zhao, Q.; Gao, P.; Shao, M. A Sulfur-Doped Copper Catalyst with Efficient Electrocatalytic Formate Generation during the Electrochemical Carbon Dioxide Reduction Reaction. Angewandte Chemie (International ed. in English) 2024, 63, e202313858. doi:10.1002/anie.202313858
  • Sharma, K. P.; Shin, M.; Awasthi, G. P.; Cho, S.; Yu, C. One-step hydrothermal synthesis of CuS/MoS2 composite for use as an electrochemical non-enzymatic glucose sensor. Heliyon 2023, 10, e23721. doi:10.1016/j.heliyon.2023.e23721
  • Sharma, K. P.; Shin, M.; Awasthi, G. P.; Yu, C. One-pot hydrothermal synthesis of CuS/CoS composite for electrochemical non-enzymatic glucose sensor. Current Applied Physics 2023, 56, 126–134. doi:10.1016/j.cap.2023.10.007
  • Suominen, M.; Mäntymäki, M.; Mattinen, M.; Sainio, J.; Putkonen, M.; Kallio, T. Electrochemical reduction of carbon dioxide to formate in a flow cell on CuSx grown by atomic layer deposition. Materials Today Sustainability 2023, 24, 100575. doi:10.1016/j.mtsust.2023.100575
  • Dhiman, V.; Kaur, M.; Prasher, D.; Bhardwaj, D.; Kumar, K.; Kumar, S. Rose flower-shaped CuS nanostructures: a study on different properties and photocatalytic performance. Applied Physics A 2023, 129. doi:10.1007/s00339-023-07138-3
  • Jia, X.; Zhang, J.; Huang, Q.; Xiong, C.; Ji, H.; Ren, Q.; Jin, Z.; Chen, S.; Guo, W.; Chen, J.; Ge, Y.; Ding, Y. Efficient degradation of ciprofloxacin in wastewater by CuFe2O4/CuS photocatalyst activated peroxynomosulfate. Environmental research 2023, 241, 117639. doi:10.1016/j.envres.2023.117639
  • Balu, R.; Panneerselvam, A.; Rajabathar, J. R.; Devendrapandi, G.; Subburaj, S.; Anand, S.; Veerasamy, U. S.; Palani, S. Synergistic effect of Echinops flower-like Copper sulfide@Cadmium sulfide heterostructure for high-performance all-solid-state asymmetric supercapacitor. Journal of Energy Storage 2023, 72, 108447. doi:10.1016/j.est.2023.108447
  • Sharma, K. P.; Shin, M.; Awasthi, G. P.; Yu, C. Single step hydrothermal synthesis of CuS/MnS composite for electrochemical non-enzymatic glucose sensor. Solid State Sciences 2023, 143, 107279. doi:10.1016/j.solidstatesciences.2023.107279
  • Shen, Y.; Zhang, G.; Zhou, X. Identification of an unusual pale green material on the surface of an ancient Chinese bronze vessel and application of laser cleaning to its removal. Heritage Science 2023, 11. doi:10.1186/s40494-023-00933-4
  • Vishwa, P.; Gopinathan, S. K.; Kandaiah, S. Stable p-Type Molybdenum and Copper Ion-Containing Coordination Polymer Photocathode in Protic Electrolytes. ACS Applied Energy Materials 2023, 6, 4766–4777. doi:10.1021/acsaem.3c00147
  • Kurus, N. N.; Milekhin, I. A.; Nebogatikova, N. A.; Antonova, I. V.; Rodyakina, E. E.; Milekhin, A. G.; Latyshev, A. V.; Zahn, D. R. T. Plasmon-Enhanced Raman Scattering by Multilayered Graphene at the Micro- and Nanoscale: SERS and TERS Analysis. The Journal of Physical Chemistry C 2023, 127, 5013–5020. doi:10.1021/acs.jpcc.2c07972
  • Becker, J.; Pellé, J.; Rioual, S.; Lescop, B.; Le Bozec, N.; Thierry, D. Atmospheric corrosion of silver, copper and nickel exposed to hydrogen sulphide: a multi-analytical investigation approach. Corrosion Science 2022, 209, 110726. doi:10.1016/j.corsci.2022.110726
  • Vančo, Ľ.; Kotlár, M.; Vretenár, V.; Kadlečíková, M.; Vojs, M.; Vogrinčič, P. Correlated reflectance and Raman spectroscopy in substrates with coherent transparent layers. Surfaces and Interfaces 2022, 34, 102309. doi:10.1016/j.surfin.2022.102309
  • Witkowski, M.; Starowicz, Z.; Zięba, A.; Adamczyk-Cieślak, B.; Socha, R. P.; Szawcow, O.; Kołodziej, G.; Haras, M.; Ostapko, J. The atomic layer deposition (ALD) synthesis of copper-tin sulfide thin films using low-cost precursors. Nanotechnology 2022, 33, 505603. doi:10.1088/1361-6528/ac9065
  • Isik, M.; Terlemezoglu, M.; Gasanly, N.; Parlak, M. Structural, morphological and temperature-tuned bandgap characteristics of CuS nano-flake thin films. Physica E: Low-dimensional Systems and Nanostructures 2022, 144, 115407. doi:10.1016/j.physe.2022.115407

Patents

  • BAO HAOMING; ZHANG HONGWEN; CAI WEIPING. Method for trace detection of mercury ions. CN 108169202 A, June 15, 2018.
Other Beilstein-Institut Open Science Activities