Applications of three-dimensional carbon nanotube networks

Manuela Scarselli, Paola Castrucci, Francesco De Nicola, Ilaria Cacciotti, Francesca Nanni, Emanuela Gatto, Mariano Venanzi and Maurizio De Crescenzi
Beilstein J. Nanotechnol. 2015, 6, 792–798. https://doi.org/10.3762/bjnano.6.82

Cite the Following Article

Applications of three-dimensional carbon nanotube networks
Manuela Scarselli, Paola Castrucci, Francesco De Nicola, Ilaria Cacciotti, Francesca Nanni, Emanuela Gatto, Mariano Venanzi and Maurizio De Crescenzi
Beilstein J. Nanotechnol. 2015, 6, 792–798. https://doi.org/10.3762/bjnano.6.82

How to Cite

Scarselli, M.; Castrucci, P.; De Nicola, F.; Cacciotti, I.; Nanni, F.; Gatto, E.; Venanzi, M.; De Crescenzi, M. Beilstein J. Nanotechnol. 2015, 6, 792–798. doi:10.3762/bjnano.6.82

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Ibrahim, M. H.; Hamzah, N.; Mohd Yusop, M. Z.; Septiani, N. L. W.; Mohd Yasin, M. F. Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone. Beilstein journal of nanotechnology 2023, 14, 741–750. doi:10.3762/bjnano.14.61
  • Skarmoutsos, I.; Koukaras, E. N.; Klontzas, E. A Computational Study on Phenyldiboronic Acid-Pillared Graphene Oxide Frameworks for Gas Storage and Separation. ACS Applied Nano Materials 2022, 5, 9286–9297. doi:10.1021/acsanm.2c01617
  • Skarmoutsos, I.; Koukaras, E. N.; Klontzas, E. The Impact of Ionic Liquid Loading in Three-Dimensional Carbon Nanotube Networks on the Separation of CO2/CH4 Fluid Mixtures: Insights from Molecular Simulations. The Journal of Physical Chemistry C 2021, 125, 13508–13522. doi:10.1021/acs.jpcc.1c00346
  • Skarmoutsos, I.; Koukaras, E. N.; Galiotis, C.; Froudakis, G. E.; Klontzas, E. Porous carbon nanotube networks and pillared graphene materials exhibiting high SF6 adsorption uptake and separation selectivity of SF6/N2 fluid mixtures: A comparative molecular simulation study. Microporous and Mesoporous Materials 2020, 307, 110464. doi:10.1016/j.micromeso.2020.110464
  • Tavakol, H.; Zhiani, M.; Shareifyan-ghahfarokhi, F. Gold-decorated sulfur-doped carbon nanotubes as electrocatalyst in hydrogen evolution reaction. Gold Bulletin 2020, 53, 63–76. doi:10.1007/s13404-020-00275-0
  • Abdullah, H. B.; Irmawati, R.; Ismail, I.; Yusof, N. A. Direct synthesis of carbon nanotube aerogel using floating catalyst chemical vapor deposition: effect of gas flow rate. Chemical Papers 2020, 74, 3359–3365. doi:10.1007/s11696-020-01166-6
  • Glukhova, O. E.; Slepchenkov, M. M. Patterns of interaction of the cell membrane with a matrix of natural polymers and carbon nanotubes. In Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications XII, SPIE, 2020; pp 25 ff. doi:10.1117/12.2546746
  • De Nicola, F.; Viola, I.; Tenuzzo, L. D.; Rasch, F.; Lohe, M. R.; Nia, A. S.; Schütt, F.; Feng, X.; Adelung, R.; Lupi, S. Wetting Properties of Graphene Aerogels. Scientific reports 2020, 10, 1916. doi:10.1038/s41598-020-58860-4
  • Domínguez, C.; Behan, J. A.; Colavita, P. E. Nanocarbon Electrochemistry; Wiley, 2019; pp 201–249. doi:10.1002/9781119468288.ch7
  • Slepchenkov, M. M.; Gerasimenko, A. Y.; Telyshev, D. V.; Glukhova, O. E. Protein-Polymer Matrices with Embedded Carbon Nanotubes for Tissue Engineering: Regularities of Formation and Features of Interaction with Cell Membranes. Materials (Basel, Switzerland) 2019, 12, 3083. doi:10.3390/ma12193083
  • Maharana, H.; Katiyar, P. K.; Mondal, K. Structure dependent super-hydrophobic and corrosion resistant behavior of electrodeposited Ni-MoSe2-MWCNT coating. Applied Surface Science 2019, 478, 26–37. doi:10.1016/j.apsusc.2019.01.166
  • Benlikaya, R.; Slobodian, P.; Proisl, K.; Cvelbar, U.; Morozov, I. Ascertaining the factors that influence the vapor sensor response: The entire case of MWCNT network sensor. Sensors and Actuators B: Chemical 2019, 283, 478–486. doi:10.1016/j.snb.2018.11.160
  • Shuba, M. V.; Yuko, D. I.; Kuzhir, P.; Maksimenko, S. A.; De Crescenzi, M.; Scarselli, M. Carbon nanotube sponges as tunable materials for electromagnetic applications. Nanotechnology 2018, 29, 375202. doi:10.1088/1361-6528/aacf3c
  • Shuba, M. V.; Yuko, D. I.; Kuzhir, P.; Maksimenko, S. A.; Scarselli, M. Tunable electromagnetic response of free-standing 3D carbon nanotube network in the Ka-band. In 2017 International Applied Computational Electromagnetics Society Symposium - Italy (ACES), IEEE, 2017; pp 1–2. doi:10.23919/ropaces.2017.7916336
  • Chaban, V. V.; Pal, S.; Prezhdo, O. V. Laser-Induced Explosion of Nitrated Carbon Nanotubes: Nonadiabatic and Reactive Molecular Dynamics Simulations. Journal of the American Chemical Society 2016, 138, 15927–15934. doi:10.1021/jacs.6b08082
  • Koizumi, R.; Hart, A. H. C.; Brunetto, G.; Bhowmick, S.; Owuor, P. S.; Hamel, J.; Gentles, A. X.; Ozden, S.; Lou, J.; Vajtai, R.; Asif, S. A. S.; Galvao, D. S.; Tiwary, C. S.; Ajayan, P. M. Mechano-chemical stabilization of three-dimensional carbon nanotube aggregates. Carbon 2016, 110, 27–33. doi:10.1016/j.carbon.2016.08.085
  • Sun, L.; He, X.; Lu, J. Super square carbon nanotube network: a new promising water desalination membrane. npj Computational Materials 2016, 2, 16004. doi:10.1038/npjcompumats.2016.4
  • Wan, W.; Lin, Y.; Prakash, A.; Zhou, Y. Three-dimensional carbon-based architectures for oil remediation: from synthesis and modification to functionalization. Journal of Materials Chemistry A 2016, 4, 18687–18705. doi:10.1039/c6ta07211a
Other Beilstein-Institut Open Science Activities