Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

Rasheed Atif and Fawad Inam
Beilstein J. Nanotechnol. 2016, 7, 1174–1196. https://doi.org/10.3762/bjnano.7.109

Cite the Following Article

Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers
Rasheed Atif and Fawad Inam
Beilstein J. Nanotechnol. 2016, 7, 1174–1196. https://doi.org/10.3762/bjnano.7.109

How to Cite

Atif, R.; Inam, F. Beilstein J. Nanotechnol. 2016, 7, 1174–1196. doi:10.3762/bjnano.7.109

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 789.5 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zeinedini, A.; Shokrieh, M. M. Agglomeration phenomenon in graphene/polymer nanocomposites: Reasons, roles, and remedies. Applied Physics Reviews 2024, 11. doi:10.1063/5.0223785
  • Hejazi, M.-A.; Coşkun, İ. Y.; Ünlü, F. Y.; Aydogan, A.; Ünlü, C.; Trabzon, L. Novel carbon quantum dots enhanced carbon nanotubes-graphene hybrid nanocomposite for VOCs detection. Diamond and Related Materials 2024, 148, 111438. doi:10.1016/j.diamond.2024.111438
  • Moradi, A.; Ansari, R.; Hassanzadeh-Aghdam, M. K.; Jamali, J. Evaluating the role of agglomerated carbon nanotubes in the effective properties of polymer nanocomposites: An efficient micromechanics-based finite element framework. Computational Materials Science 2024, 246, 113337. doi:10.1016/j.commatsci.2024.113337
  • Yang, J.; Wang, F.; Liang, C.; Zhou, S.; Huang, J.; Zhao, G.; Liu, Y. Surface one-step modification of graphene oxide with N-cyclohexylbenzothiazole-2-sulfonamide to enhance the wear resistance of natural rubber/butadiene rubber composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 703, 135314. doi:10.1016/j.colsurfa.2024.135314
  • Giner-Grau, S.; Lazaro-Hdez, C.; Pascual, J.; Fenollar, O.; Boronat, T. Enhancing Polylactic Acid Properties with Graphene Nanoplatelets and Carbon Black Nanoparticles: A Study of the Electrical and Mechanical Characterization of 3D-Printed and Injection-Molded Samples. Polymers 2024, 16, 2449. doi:10.3390/polym16172449
  • Sharma, S.; Bhattacharyya, A. R.; Bhende, M.; Patil, V. Consequence of incorporation of MWCNTs on PVA hydrogel fabricated via naturally cooling: Thermal, mechanical, and electrical properties. Journal of Applied Polymer Science 2024, 141. doi:10.1002/app.56066
  • Wang, L.; Yong, L. X.; Loo, S. C. J. Utilizing Food Waste in 3D-Printed PLA Formulations to Achieve Sustainable and Customizable Controlled Delivery Systems. ACS omega 2024, 9, 34140–34150. doi:10.1021/acsomega.4c05155
  • Ahmad Farid, M. A.; Mohd Johari, S. A.; Lease, J.; Ayoub, M.; Andou, Y. Catalytic efficiency and stability of biomass-derived sulfonated graphene catalysts in microwave-enhanced biodiesel production. Fuel 2024, 368, 131580. doi:10.1016/j.fuel.2024.131580
  • Zhang, W.; Wu, P.; Wei, J.; Zhou, Q.; Liu, M. Simple, low-cost and high-quality fabrication of GNPs@Ti6Al4V powders for high-performance composites Inspired by pearl polishing. Materials Letters 2024, 367, 136646. doi:10.1016/j.matlet.2024.136646
  • Hong, Y.; Kang, Z.; Fan, J. Revolutionizing textile: Advanced techniques for superior thermal conductivity. Composites Part A: Applied Science and Manufacturing 2024, 186, 108380. doi:10.1016/j.compositesa.2024.108380
  • Karuppasamy, K.; Lin, J.; Vikraman, D.; Hussain, S.; Ramu, M.; Alameri, S.; Kim, H.-S.; Korvink, J. G.; Alfantazi, A.; Sharma, B. Unveiling the electrochemical excellence of sulfur and nitrogen-enriched 3D porous carbon nanofibers in high-performance energy storage devices. Journal of Industrial and Engineering Chemistry 2024. doi:10.1016/j.jiec.2024.07.021
  • Mitkus, R. Piezoelectric 0–3 Composites with Conductive Nanoparticles. Mechanics and Adaptronics; Springer Nature Switzerland, 2024; pp 127–172. doi:10.1007/978-3-031-56946-3_7
  • Liu, H.; Fan, Y.; Hang, Z.; Yang, J.; Feng, C.; Su, Y.; Weng, G. J. Hybrid micromechanical modelling and experiments on temperature-dependent thermal conductivity of graphene reinforced porous cement composites. Journal of Building Engineering 2024, 86, 108859. doi:10.1016/j.jobe.2024.108859
  • Tekin, İ.; Ersus, S. Development of thermoplastic starch/poly(butylene adipate‐co‐terephthalate) biobased active packaging films and potential usage in the food industry. Journal of Applied Polymer Science 2024, 141. doi:10.1002/app.55824
  • Mosavari, M.; Alimohammadi, E.; Mahdikhah, V.; Mousavi, S. M. H.; Sheibani, S.; Haroonabadi, L.; Sharifnia, S. Degradation of Pollutants and Photocatalytic H2 Evolution Using Carbon Nanotube/Ag Nanoparticle-Modified BaTiO3 Nanoparticles. ACS Applied Nano Materials 2024, 7, 12521–12538. doi:10.1021/acsanm.4c00957
  • M. Elsehly, E.; G. Chechenin, N. The Performance of Functionalized Multi-Walled Carbon Nanotube-Based Filters for Water Treatment Applications. Carbon Nanotubes - Recent Advances, Perspectives and Applications [Working Title]; IntechOpen, 2024. doi:10.5772/intechopen.114885
  • Orji, U. U.; Patricia, P. A.; Sunday, A. V.; Olawale, P. Development of polymer/carbon nanotubes incorporated sustainable materials for manufacturing of autobrake pad. The International Journal of Advanced Manufacturing Technology 2024, 132, 3227–3236. doi:10.1007/s00170-024-13536-5
  • Hanif, M.; Zhang, L.; Shah, A. H.; Chen, Z. Mechanical analysis and biodegradation of oxides-based magneto-responsive shape memory polymers for material extrusion 3D printing of biomedical scaffolds. Additive Manufacturing 2024, 86, 104174. doi:10.1016/j.addma.2024.104174
  • Sethulekshmi, A.; Jacob, F. P.; Joseph, K.; Aprem, A. S.; Sisupal, S. B.; Saritha, A. Biomaterials assisted 2D materials exfoliation: Reinforcing agents for polymer matrices. European Polymer Journal 2024, 210, 112943. doi:10.1016/j.eurpolymj.2024.112943
  • Reil, M.; Hoffman, J.; Predecki, P.; Kumosa, M. Intermolecular interactions in graphene and oxidized graphene nanocomposites. Composites Science and Technology 2024, 248, 110433. doi:10.1016/j.compscitech.2024.110433

Patents

  • SIMON PARK; CHANEEL PARK; HONGSEOK JO; JONG SONG KIM; KYOUNG SOO PARK; JI HOON KANG. METHOD OF MANUFACTURING LITHIUM BATTERY ELECTRODE WITH ENHANCED ELECTRICAL AND IONIC CONDUCTIVITY. KR 20220128932 A, Sept 22, 2022.
  • WU MARK Y; HSIEH CHENG-YU; LIN GENG WEI. Graphene additives and methods of preparing the same. US 11084726 B2, Aug 10, 2021.
  • WU MARK Y; HSIEH CHENG-YU; SHEN FANG-RU; LIN GENG WEI; CHEN JING-RU. Graphene dispersion pastes, methods of preparing and using the same. US 10427942 B2, Oct 1, 2019.
Other Beilstein-Institut Open Science Activities