Supporting Information
Supporting Information File 1:
Additional experimental information.
The Supporting Information includes a representative scheme of the functionalization method of Fe3O4 NPs, a description of the preparation of RGD peptide, the heat induction procedure and additional figures of the XRD, TGA and FTIR characterization. |
||
Format: PDF | Size: 374.9 KB | Download |
Cite the Following Article
Antitumor magnetic hyperthermia induced by RGD-functionalized Fe3O4 nanoparticles, in an experimental model of colorectal liver metastases
Oihane K. Arriortua, Eneko Garaio, Borja Herrero de la Parte, Maite Insausti, Luis Lezama, Fernando Plazaola, Jose Angel García, Jesús M. Aizpurua, Maialen Sagartzazu, Mireia Irazola, Nestor Etxebarria, Ignacio García-Alonso, Alberto Saiz-López and José Javier Echevarria-Uraga
Beilstein J. Nanotechnol. 2016, 7, 1532–1542.
https://doi.org/10.3762/bjnano.7.147
How to Cite
Arriortua, O. K.; Garaio, E.; Herrero de la Parte, B.; Insausti, M.; Lezama, L.; Plazaola, F.; García, J. A.; Aizpurua, J. M.; Sagartzazu, M.; Irazola, M.; Etxebarria, N.; García-Alonso, I.; Saiz-López, A.; Echevarria-Uraga, J. J. Beilstein J. Nanotechnol. 2016, 7, 1532–1542. doi:10.3762/bjnano.7.147
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.0 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Dey, C. C.; Dalal, M.; Chakrabarti, P. K. doi:10.1002/9781394172917.ch15
- Vicentini, M.; Ferrero, R.; Manzin, A. Influence of coil geometry, supply conditions and nanoparticle heating properties on magnetic hyperthermia in mouse models. International Journal of Thermal Sciences 2024, 203, 109151. doi:10.1016/j.ijthermalsci.2024.109151
- Nayal, R.; Mejjo, D.; Abajy, M. Y. Anti inflammatory properties and safety of green synthesized metal and metal oxide nanoparticles: A review article. European Journal of Medicinal Chemistry Reports 2024, 11, 100169. doi:10.1016/j.ejmcr.2024.100169
- Milewska, S.; Sadowska, A.; Stefaniuk, N.; Misztalewska-Turkowicz, I.; Wilczewska, A. Z.; Car, H.; Niemirowicz-Laskowska, K. Tumor-Homing Peptides as Crucial Component of Magnetic-Based Delivery Systems: Recent Developments and Pharmacoeconomical Perspective. International journal of molecular sciences 2024, 25, 6219. doi:10.3390/ijms25116219
- Goñi, A.; Gil de Muro, I.; Peña, A.; Castellanos-Rubio, I.; Insausti, M. Tailoring magnetic properties of transition metals mixed oxides obtained by soft chemistry synthesis routes. Advances in Inorganic Chemistry; Elsevier, 2024; pp 355–383. doi:10.1016/bs.adioch.2024.05.006
- Gago, L.; Quiñonero, F.; Perazzoli, G.; Melguizo, C.; Prados, J.; Ortiz, R.; Cabeza, L. Nanomedicine and Hyperthermia for the Treatment of Gastrointestinal Cancer: A Systematic Review. Pharmaceutics 2023, 15, 1958. doi:10.3390/pharmaceutics15071958
- Farzanegan, Z.; Tahmasbi, M. Evaluating the applications and effectiveness of magnetic nanoparticle-based hyperthermia for cancer treatment: A systematic review. Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine 2023, 198, 110873. doi:10.1016/j.apradiso.2023.110873
- Islam, T.; Rahaman, M. M.; Mia, M. N.; Ara, I.; Islam, M. T.; Alam Riaz, T.; Araújo, A. C. J.; de Lima Silva, J. M. F.; de Lacerda, B. C. G. V.; de Andrade, E. M.; Khan, M. A.; Coutinho, H. D. M.; Husain, Z.; Islam, M. T. Therapeutic Perspectives of Metal Nanoformulations. Drugs and Drug Candidates 2023, 2, 232–278. doi:10.3390/ddc2020014
- Sieni, E.; Geninatti Crich, S.; Ruggiero, M. R.; Del Bianco, L.; Spizzo, F.; Bertani, R.; Mozzon, M.; Barozzi, M.; Forzan, M.; Sgarbossa, P. Experimental Comparison of Methods to Evaluate Heat Generated by Magnetic Nanofluids Exposed to Alternating Magnetic Fields. Fluids 2023, 8, 83. doi:10.3390/fluids8030083
- Mehak; Thummer, R. P.; Pandey, L. M. Surface modified iron-oxide based engineered nanomaterials for hyperthermia therapy of cancer cells. Biotechnology & genetic engineering reviews 2023, 39, 1187–1233. doi:10.1080/02648725.2023.2169370
- Navarro-Tovar, G.; Salado-Leza, D.; Carreón-Álvarez, C.; Acosta-Ruelas, B. J.; Rodríguez-López, J. L. Surface functionalization of nanoparticles: Structure determines function. Antimicrobial Activity of Nanoparticles; Elsevier, 2023; pp 203–248. doi:10.1016/b978-0-12-821637-8.00004-3
- Talha, M.; Pathak, N.; Bhattacharyya, S.; Lin, Y. Bio-nanomaterials and their applications. Applications of Multifunctional Nanomaterials; Elsevier, 2023; pp 461–473. doi:10.1016/b978-0-12-820557-0.00024-2
- Hedayatnasab, Z.; Ramazani Saadatabadi, A.; Shirgahi, H.; Mozafari, M. Heat induction of iron oxide nanoparticles with rational artificial neural network design-based particle swarm optimization for magnetic cancer hyperthermia. Materials Research Bulletin 2023, 157, 112035. doi:10.1016/j.materresbull.2022.112035
- Yan, X.; Xu, H.; Li, J.; Chen, W.; Hu, Y. Inverse problem of magneto-acoustic concentration tomography for magnetic nanoparticles with magnetic induction in a saturation magnetization state based on the least squares QR factorization method-trapezoidal method. Medical & biological engineering & computing 2022, 60, 3295–3309. doi:10.1007/s11517-022-02668-z
- Vicentini, M.; Vassallo, M.; Ferrero, R.; Androulakis, I.; Manzin, A. In silico evaluation of adverse eddy current effects in preclinical tests of magnetic hyperthermia. Computer methods and programs in biomedicine 2022, 223, 106975. doi:10.1016/j.cmpb.2022.106975
- Herrero de la Parte, B.; Rodrigo, I.; Gutiérrez-Basoa, J.; Iturrizaga Correcher, S.; Mar Medina, C.; Echevarría-Uraga, J. J.; Garcia, J. A.; Plazaola, F.; García-Alonso, I. Proposal of New Safety Limits for In Vivo Experiments of Magnetic Hyperthermia Antitumor Therapy. Cancers 2022, 14, 3084. doi:10.3390/cancers14133084
- Palzer, J.; Eckstein, L.; Slabu, I.; Reisen, O.; Neumann, U. P.; Roeth, A. A. Iron Oxide Nanoparticle-Based Hyperthermia as a Treatment Option in Various Gastrointestinal Malignancies. Nanomaterials (Basel, Switzerland) 2021, 11, 3013. doi:10.3390/nano11113013
- Taiariol, L.; Chaix, C.; Farre, C.; Moreau, E. Click and Bioorthogonal Chemistry: The Future of Active Targeting of Nanoparticles for Nanomedicines?. Chemical reviews 2021, 122, 340–384. doi:10.1021/acs.chemrev.1c00484
- Augusto-Jimenez, Y. E.; González-Montoya, M.; Naranjo-Feliciano, D.; Uribe-Ramírez, D.; Cristiani-Urbina, E.; Díaz-Águila, C.; Yee-Madeira, H.; Mora-Escobedo, R. Antioxidant Activity of Bioactive Peptide Fractions from Germinated Soybeans Conjugated to Fe3O4 Nanoparticles by the Ugi Multicomponent Reaction. Molecules (Basel, Switzerland) 2021, 26, 5726. doi:10.3390/molecules26195726
- Liu, L.; Deng, Y.; Zheng, Z.; Deng, Z.; Zhang, J.; Li, J.; Liang, M.; Zhou, X.; Tan, W.; Yang, H.; Neckers, L. M.; Zou, F.; Chen, X. Hsp90 Inhibitor STA9090 Sensitizes Hepatocellular Carcinoma to Hyperthermia-Induced DNA Damage by Suppressing DNA-PKcs Protein Stability and mRNA Transcription. Molecular cancer therapeutics 2021, 20, 1880–1892. doi:10.1158/1535-7163.mct-21-0215