Cite the Following Article
Organoclay hybrid materials as precursors of porous ZnO/silica-clay heterostructures for photocatalytic applications
Marwa Akkari, Pilar Aranda, Abdessalem Ben Haj Amara and Eduardo Ruiz-Hitzky
Beilstein J. Nanotechnol. 2016, 7, 1971–1982.
https://doi.org/10.3762/bjnano.7.188
How to Cite
Akkari, M.; Aranda, P.; Ben Haj Amara, A.; Ruiz-Hitzky, E. Beilstein J. Nanotechnol. 2016, 7, 1971–1982. doi:10.3762/bjnano.7.188
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.3 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Jemai, R.; Chalghaf, R.; Boubakri, S.; Amine Djebbi, M.; Naamen, S.; Ben Rhaiem, H.; Ben Haj Amara, A. Montmorillonite: Properties, Characteristics, and Its Harnessing in Environmental Applications. Recent Advances in Montmorillonite; IntechOpen, 2024. doi:10.5772/intechopen.1004763
- Baldez, W. M.; Santos, J. D.; Santos, W. D.; Aguilar-Pliego, J.; Martín, N.; Cabral, A. A.; Paiva, A. E.; Rodrigues, S. F.; Teixeira, M. M.; Alcântara, A. C.; Rojas, A. Enhanced photodegradation of ciprofloxacin antibiotic using ZnO@FAU composite: A promising material for contaminant removal. Desalination and Water Treatment 2024, 318, 100356. doi:10.1016/j.dwt.2024.100356
- Pankam, P.; Sae‐Oui, P.; Khaorapapong, N.; Boonchiangma, S.; Siriwong, C. Structure and properties of ZnO‐organobentonite‐filled natural rubber composites. ChemistrySelect 2024, 9. doi:10.1002/slct.202303821
- Fatimah, I.; Yahya, A.; Purwiandono, G.; Sagadevan, S. WO3 dispersed on a titanium porous clay heterostructure as a highly efficient visible light-active photocatalyst. Inorganic Chemistry Communications 2023, 158, 111548. doi:10.1016/j.inoche.2023.111548
- Thmaini, N.; Charradi, K.; Ahmed, Z.; Chtourou, R.; Aranda, P. Nanoarchitectonics of fibrous clays as fillers of improved proton-conducting membranes for fuel-cell applications. Applied Clay Science 2023, 242, 107019. doi:10.1016/j.clay.2023.107019
- Heidari, A.; Shahbazi, A.; Aminabhavi, T. M.; Barceló, D.; Rtimi, S. A systematic review of clay-based photocatalysts for emergent micropollutants removal and microbial inactivation from aqueous media: Status and limitations. Journal of Environmental Chemical Engineering 2022, 10, 108813. doi:10.1016/j.jece.2022.108813
- Chen, H.; Deng, H.; Zhong, X.; Zhou, H.; Zhan, J.; Zhou, X. Highly dispersed amorphous ZnO on a petal-like porous silica-clay composite with enhanced antimicrobial properties. Colloids and Surfaces B: Biointerfaces 2022, 220, 112978. doi:10.1016/j.colsurfb.2022.112978
- Popoola, S. A.; Al Dmour, H.; Rakass, S.; Fatimah, I.; Liu, Y.; Mohmoud, A.; Kooli, F. Enhancement Properties of Zr Modified Porous Clay Heterostructures for Adsorption of Basic-Blue 41 Dye: Equilibrium, Regeneration, and Single Batch Design Adsorber. Materials (Basel, Switzerland) 2022, 15, 5567. doi:10.3390/ma15165567
- Akkari, M.; Bardaoui, A.; Djebbi, M. A.; Amara, A. B. H.; Chtourou, R. Hydrothermal synthesis of Ag-doped ZnO/sepiolite nanostructured material for enhanced photocatalytic activity. Environmental science and pollution research international 2022, 29, 67159–67169. doi:10.1007/s11356-022-20539-w
- Fatimah, I.; Fadillah, G.; Yanti, I.; Doong, R.-A. Clay-Supported Metal Oxide Nanoparticles in Catalytic Advanced Oxidation Processes: A Review. Nanomaterials (Basel, Switzerland) 2022, 12, 825. doi:10.3390/nano12050825
- Dos Santos Fernandes Júnior, A. D. J.; Sodré, W. C.; Soares, B. E.; Bezerra, C. W. B.; Rojas, A.; Perez-Carvajal, J.; Alcântara, A. C. S. In situ assembling of layered double hydroxide to magadiite layered silicate with enhanced photocatalytic and recycling performance. Applied Surface Science 2021, 569, 151007. doi:10.1016/j.apsusc.2021.151007
- Nicola, B. P.; Bernardo-Gusmão, K.; Schwanke, A. J. Smectite Clay Nanoarchitectures: Rational Design and Applications. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Springer International Publishing, 2021; pp 275–305. doi:10.1007/978-3-030-36268-3_60
- Al Dmour, H.; Kooli, F.; Mohmoud, A.; Liu, Y.; Popoola, S. A. Al and Zr Porous Clay Heterostructures as Removal Agents of Basic Blue-41 Dye from an Artificially Polluted Solution: Regeneration Properties and Batch Design. Materials (Basel, Switzerland) 2021, 14, 2528. doi:10.3390/ma14102528
- Choudhury, T. Clay Hybrid Materials. Clay Science and Technology; IntechOpen, 2021. doi:10.5772/intechopen.92529
- Nicola, B. P.; Bernardo-Gusmão, K.; Schwanke, A. J. Smectite Clay Nanoarchitectures: Rational Design and Applications. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Springer International Publishing, 2020; pp 1–32. doi:10.1007/978-3-030-11155-7_60-1
- Nicola, B. P.; Bernardo-Gusmão, K.; Schwanke, A. J. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications - Smectite Clay Nanoarchitectures: Rational Design and Applications. 2020; pp 275–305.
- Chotiradsirikun, S.; Guo, R.; Bhalla, A. S.; Manuspiya, H. Novel synthesis route of porous clay heterostructures via mixed surfactant template and their dielectric behavior. Journal of Porous Materials 2020, 28, 117–128. doi:10.1007/s10934-020-00971-4
- Babu, A. T.; Antony, R. Clay semiconductor hetero-system of SnO2/bentonite nanocomposites for catalytic degradation of toxic organic wastes. Applied Clay Science 2019, 183, 105312. doi:10.1016/j.clay.2019.105312
- Rebitski, E. P.; Darder, M.; Aranda, P. Layered double hydroxide/sepiolite hybrid nanoarchitectures for the controlled release of herbicides. Beilstein journal of nanotechnology 2019, 10, 1679–1690. doi:10.3762/bjnano.10.163
- Ruiz-Hitzky, E.; Aranda, P.; Akkari, M.; Khaorapapong, N.; Ogawa, M. Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles. Beilstein journal of nanotechnology 2019, 10, 1140–1156. doi:10.3762/bjnano.10.114