Characterisation of thin films of graphene–surfactant composites produced through a novel semi-automated method

Nik J. Walch, Alexei Nabok, Frank Davis and Séamus P. J. Higson
Beilstein J. Nanotechnol. 2016, 7, 209–219. https://doi.org/10.3762/bjnano.7.19

Cite the Following Article

Characterisation of thin films of graphene–surfactant composites produced through a novel semi-automated method
Nik J. Walch, Alexei Nabok, Frank Davis and Séamus P. J. Higson
Beilstein J. Nanotechnol. 2016, 7, 209–219. https://doi.org/10.3762/bjnano.7.19

How to Cite

Walch, N. J.; Nabok, A.; Davis, F.; Higson, S. P. J. Beilstein J. Nanotechnol. 2016, 7, 209–219. doi:10.3762/bjnano.7.19

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 723.8 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Belov, D. V.; Belyaev, S. N.; Radishchev, D. B.; Okhapkin, A. I. Synthesis of Coatings Based on Graphene-Like Materials and Study of Their Physicochemical Properties. Inorganic Materials: Applied Research 2024, 15, 506–522. doi:10.1134/s2075113324020102
  • Belov, D. V.; Belyaev, S. N. Physicochemical properties of coatings obtained from dispersions of graphene oxide and its reduced form. Russian Chemical Bulletin 2024, 73, 814–827. doi:10.1007/s11172-024-4195-9
  • Tene, T.; Usca, G. T.; Guevara, M.; Molina, R.; Veltri, F.; Arias, M.; Caputi, L. S.; Gomez, C. V. Toward Large-Scale Production of Oxidized Graphene. Nanomaterials (Basel, Switzerland) 2020, 10, 279. doi:10.3390/nano10020279
  • Gomez, C. V.; Tene, T.; Guevara, M.; Usca, G. T.; Colcha, D.; Brito, H.; Molina, R.; Bellucci, S.; Tavolaro, A. Preparation of Few-Layer Graphene Dispersions from Hydrothermally Expanded Graphite. Applied Sciences 2019, 9, 2539. doi:10.3390/app9122539
  • Fan, Z.; Nie, Y.; Wei, Y.; Zhao, J.; Liao, X.; Zhang, J. Facile and large-scale synthesis of graphene quantum dots for selective targeting and imaging of cell nucleus and mitochondria. Materials science & engineering. C, Materials for biological applications 2019, 103, 109824. doi:10.1016/j.msec.2019.109824
  • Díez-Pascual, A. M.; Vallés, C.; Mateos, R.; Vera-López, S.; Kinloch, I. A.; San Andrés, M. P. Influence of surfactants of different nature and chain length on the morphology, thermal stability and sheet resistance of graphene. Soft matter 2018, 14, 6013–6023. doi:10.1039/c8sm01017j
  • Sukumaran, S. S.; Jinesh, K. B.; Gopchandran, K. Liquid phase exfoliated graphene for electronic applications. Materials Research Express 2017, 4, 095017. doi:10.1088/2053-1591/aa8586
  • Bonatout, N.; Muller, F.; Fontaine, P.; Gascón, I.; Konovalov, O.; Goldmann, M. How exfoliated graphene oxide nanosheets organize at the water interface: evidence for a spontaneous bilayer self-assembly. Nanoscale 2017, 9, 12543–12548. doi:10.1039/c7nr03403b
  • Nabok, A.; Walch, N. J.; Dutton, S.; Davis, F.; Higson, S. P. J. Graphene-based LbL deposited films: further study of electrical and gas sensing properties. MATEC Web of Conferences 2017, 98, 04001. doi:10.1051/matecconf/20179804001
  • Abdullaeva, Z.; Kelgenbaeva, Z.; Masayuki, T.; Hirano, M.; Nagaoka, S.; Shirosaki, T. Graphene Sheets with Modified Surface by Sodium Lauryl Sulfate Surfactant for Biomedical Applications. Graphene 2016, 5, 155–165. doi:10.4236/graphene.2016.54013
Other Beilstein-Institut Open Science Activities