Supporting Information
Supporting information explains the calculations of the average roughness (Ra) of a uniform monolayer of beads on a surface.
Supporting Information File 1: Calculating the Ra of a uniform bead monolayer surface. | ||
Format: PDF | Size: 187.5 KB | Download |
Cite the Following Article
When the going gets rough – studying the effect of surface roughness on the adhesive abilities of tree frogs
Niall Crawford, Thomas Endlein, Jonathan T. Pham, Mathis Riehle and W. Jon P. Barnes
Beilstein J. Nanotechnol. 2016, 7, 2116–2131.
https://doi.org/10.3762/bjnano.7.201
How to Cite
Crawford, N.; Endlein, T.; Pham, J. T.; Riehle, M.; Barnes, W. J. P. Beilstein J. Nanotechnol. 2016, 7, 2116–2131. doi:10.3762/bjnano.7.201
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 911.2 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Richhariya, V.; Tripathy, A.; Carvalho, O.; Gomes, J.; Nine, M. J.; Silva, F. S. Capillary-Enhanced Biomimetic Adhesion on Icy Surfaces for High-Performance Antislip Shoe-Soles. ACS applied materials & interfaces 2024. doi:10.1021/acsami.4c14496
- Fu, S.; Sun, J.; Hu, Z.; Zhao, Y.; Yao, T.; Wang, X.; Ji, Y.; Deng, K.; Ji, K. Multi-Mechanism Collaborative Bionic Fixation Technique Between a Wide Range of Solid Interfaces. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2024, e2409507. doi:10.1002/advs.202409507
- Hernandez, A. M.; Sandoval, J. A.; Yuen, M. C.; Wood, R. J. Stickiness in shear: stiffness, shape, and sealing in bioinspired suction cups affect shear performance on diverse surfaces. Bioinspiration & biomimetics 2024, 19, 36008–036008. doi:10.1088/1748-3190/ad2c21
- Wang, X.; Ji, K.; Fu, S.; Tu, C.; Wu, J.; Huo, T.; Zhao, J.; Ji, Y.; Deng, K.; Tan, H.; Dai, Z. Influence of vibrations and shocks on the stability of biomimetic attachments. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 682, 132946. doi:10.1016/j.colsurfa.2023.132946
- Richhariya, V.; Tripathy, A.; Carvalho, O.; Julker Nine, M.; Losic, D.; Silva, F. Unravelling the physics and mechanisms behind slips and falls on icy surfaces: A comprehensive review and nature-inspired solutions. Materials & Design 2023, 234, 112335. doi:10.1016/j.matdes.2023.112335
- Wati, R. K.; Gravendeel, B.; Langelaan, R.; van Heuven, B. J.; Claessens, J.; Kleynen, J.; Smets, E. F.; de Winter, A. J.; van der Meijden, A. Orchids reduce attachment of herbivorous snails with leaf trichomes. PloS one 2023, 18, e0285731. doi:10.1371/journal.pone.0285731
- Gould, J.; Callen, A.; Knibb, G.; Donelly, R.; Schmahl, K.; Maynard, C.; Sanders, S.; Lemckert, F.; McHenry, C. Learning from past designs: improving amphibian fences using an adaptive management approach. Wildlife Research 2023, 51. doi:10.1071/wr23007
- Clifton, G.; Stark, A. Y.; Li, C.; Gravish, N. The bumpy road ahead: the role of substrate roughness on animal walking and a proposed comparative metric. The Journal of experimental biology 2023, 226. doi:10.1242/jeb.245261
- Wang, X.; Ji, K.; Fu, S.; Tu, C.; Wu, J.; Huo, T.; Zhao, J.; Ji, Y.; Deng, K.; Tan, H.; Dai, Z. Influence of Vibrations and Shocks on the Stability of Biomimetic Attachments. Elsevier BV 2023. doi:10.2139/ssrn.4613776
- Wang, X.; Ji, K.; Fu, S.; Tu, C.; Wu, J.; Huo, T.; Zhao, J.; Ji, Y.; Deng, K.; Tan, H.; Dai, Z. Influence of Vibrations and Shocks on the Stability of Biomimetic Attachments. Elsevier BV 2023. doi:10.2139/ssrn.4573863
- Dwivedi, P.; Singh, K.; Chaudhary, K.; Mangal, R. Biomimetic Polymer Adhesives. ACS Applied Polymer Materials 2022, 4, 4588–4608. doi:10.1021/acsapm.1c01285
- Hughes, D. F.; Green, M. L.; Warner, J. K.; Davidson, P. C. Evaluating Exclusion Barriers for Treefrogs in Agricultural Landscapes. Wildlife Society Bulletin 2021, 45, 305–311. doi:10.1002/wsb.1168
- Davey, P. J.; Power, A. M.; Santos, R.; Bertemes, P.; Ladurner, P.; Palmowski, P.; Clarke, J. L.; Flammang, P.; Lengerer, B.; Hennebert, E.; Rothbächer, U.; Pjeta, R.; Wunderer, J.; Zurovec, M.; Aldred, N. Omics‐based molecular analyses of adhesion by aquatic invertebrates. Biological reviews of the Cambridge Philosophical Society 2021, 96, 1051–1075. doi:10.1111/brv.12691
- Li, M.; Shi, L.; Wang, X. Physical mechanisms behind the wet adhesion: From amphibian toe-pad to biomimetics. Colloids and surfaces. B, Biointerfaces 2020, 199, 111531. doi:10.1016/j.colsurfb.2020.111531
- Pillai, R.; Nordberg, E. J.; Riedel, J.; Schwarzkopf, L. Geckos cling best to, and prefer to use, rough surfaces. Frontiers in zoology 2020, 17, 1–12. doi:10.1186/s12983-020-00374-w
- O’Donnell, M. K.; Deban, S. M. The Effects of Roughness and Wetness on Salamander Cling Performance. Integrative and comparative biology 2020, 60, 840–851. doi:10.1093/icb/icaa110
- Wolff, J. O.; Little, D. J.; Herberstein, M. E. Limits of piriform silk adhesion-similar effects of substrate surface polarity on silk anchor performance in two spider species with disparate microhabitat use. Die Naturwissenschaften 2020, 107, 1–10. doi:10.1007/s00114-020-01687-w
- Langowski, J. K. A.; Dodou, D.; van Assenbergh, P.; van Leeuwen, J. L. Design of Tree-Frog-Inspired Adhesives. Integrative and comparative biology 2020, 60, 906–918. doi:10.1093/icb/icaa037
- Glover, J. D.; Pham, J. T. Capillary-driven indentation of a microparticle into a soft, oil-coated substrate. Soft matter 2020, 16, 5812–5818. doi:10.1039/d0sm00296h
- Meng, F.; Liu, Q.; Wang, X.; Tan, D.; Xue, L.; Barnes, W. J. P. Tree frog adhesion biomimetics: opportunities for the development of new, smart adhesives that adhere under wet conditions. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 2019, 377, 20190131. doi:10.1098/rsta.2019.0131