Cite the Following Article
Selective photocatalytic reduction of CO2 to methanol in CuO-loaded NaTaO3 nanocubes in isopropanol
Tianyu Xiang, Feng Xin, Jingshuai Chen, Yuwen Wang, Xiaohong Yin and Xiao Shao
Beilstein J. Nanotechnol. 2016, 7, 776–783.
https://doi.org/10.3762/bjnano.7.69
How to Cite
Xiang, T.; Xin, F.; Chen, J.; Wang, Y.; Yin, X.; Shao, X. Beilstein J. Nanotechnol. 2016, 7, 776–783. doi:10.3762/bjnano.7.69
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.4 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Narzary, S.; Duraisamy, K.; Medikondu, N. R.; Chakraborty, K.; Das, S.; Choudhury, M. G.; Paul, S. Recent trends on perovskite materials and their applications in photocatalysis: a review. Optical and Quantum Electronics 2024, 56. doi:10.1007/s11082-024-07418-z
- Wang, H.; Guo, Q.; Zhang, H.; Zuo, C. Developments and challenges on enhancement of photocatalytic CO2 reduction through photocatalysis. Carbon Resources Conversion 2024, 7, 100263. doi:10.1016/j.crcon.2024.100263
- Prabagar, J. S.; Tenzin, T.; Sneha, Y.; Divya, V.; Anusha, H. S.; Shahmoradi, B.; Wantala, K.; Jenkins, D.; McKay, G.; Park, J.-W.; Shivaraju, H. P. Novel NiFeAl hybridized layered double hydroxide nanofibrous for photocatalytic degradation and CO2 reduction. Materials Today Sustainability 2024, 26, 100773. doi:10.1016/j.mtsust.2024.100773
- Shafiee, P.; Arellano-Garcia, H. Photocatalysts in CO2 Direct Conversion to Methanol. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2024. doi:10.1016/b978-0-443-15740-0.00121-x
- Qu, T.; Wei, S.; Xiong, Z.; Zhang, J.; Zhao, Y. Progress and prospect of CO2 photocatalytic reduction to methanol. Fuel Processing Technology 2023, 251, 107933. doi:10.1016/j.fuproc.2023.107933
- Wang, Q.-S.; Yuan, Y.-C.; Li, C.-F.; Zhang, Z.-R.; Xia, C.; Pan, W.-G.; Guo, R.-T. Research Progress on Photocatalytic CO2 Reduction Based on Perovskite Oxides. Small (Weinheim an der Bergstrasse, Germany) 2023, 19, e2301892. doi:10.1002/smll.202301892
- Tawalbeh, M.; Alarab, S.; Al-Othman, A.; Javed, R. M. N. The Operating Parameters, Structural Composition, and Fuel Sustainability Aspects of PEM Fuel Cells: A Mini Review. Fuels 2022, 3, 449–474. doi:10.3390/fuels3030028
- Wang, W.; Wang, L.; Su, W.; Xing, Y. Photocatalytic CO2 reduction over copper-based materials: A review. Journal of CO2 Utilization 2022, 61, 102056. doi:10.1016/j.jcou.2022.102056
- Zhou, H.; Yin, Q. Hydrothermal preparation of Nb-doped NaTaO3 with enhanced photocatalytic activity for removal of organic dye. Chinese Journal of Chemical Engineering 2022, 46, 142–149. doi:10.1016/j.cjche.2021.05.037
- Ni, M.; Wang, L.; Chai, Y.; Wang, B.; Li, D.; Shen, J.; Zhang, Z.; Wang, X. Multimetal tantalate CsBi2Ta5O16 for photocatalytic conversion of CO2 with H2O into CH4 and O2. Applied Surface Science 2022, 588, 152933. doi:10.1016/j.apsusc.2022.152933
- You, J.; Xiao, M.; Wang, Z.; Wang, L. Non-noble metal-based cocatalysts for photocatalytic CO2 reduction. Journal of CO2 Utilization 2022, 55, 101817. doi:10.1016/j.jcou.2021.101817
- Ahadzi, E.; Ramyashree, M.; Priya, S. S.; Sudhakar, K.; Tahir, M. CO2 to green fuel: Photocatalytic process optimization study. Sustainable Chemistry and Pharmacy 2021, 24, 100533. doi:10.1016/j.scp.2021.100533
- Madi, M.; Tahir, M.; Tasleem, S. Advances in structural modification of perovskite semiconductors for visible light assisted photocatalytic CO2 reduction to renewable solar fuels: A review. Journal of Environmental Chemical Engineering 2021, 9, 106264. doi:10.1016/j.jece.2021.106264
- Garay-Rodríguez, L. F.; Yoshida, H.; Torres-Martínez, L. M.; Juárez-Ramírez, I. Water splitting and carbon dioxide reduction over alkaline-earth tantalate photocatalysts loaded with metal oxide cocatalysts. International Journal of Hydrogen Energy 2021, 46, 32490–32502. doi:10.1016/j.ijhydene.2021.07.092
- Navarro-Jaén, S.; Virginie, M.; Bonin, J.; Robert, M.; Wojcieszak, R.; Khodakov, A. Y. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nature reviews. Chemistry 2021, 5, 564–579. doi:10.1038/s41570-021-00289-y
- Duan, J.; Sun, P.; Zhao, H.; Ji, Z.; Zhang, D.; Wang, W. Construction of columnar cactus-like 2D/1D CdxCu1-xS@CuO shell-core structure photocatalyst for the reduction of CO2 to methanol. Optical Materials 2021, 115, 111016. doi:10.1016/j.optmat.2021.111016
- Bhardwaj, R.; Sharma, T.; Nguyen, D. D.; Cheng, C. K.; Lam, S. S.; Xia, C.; Nadda, A. K. Integrated catalytic insights into methanol production: Sustainable framework for CO2 conversion. Journal of environmental management 2021, 289, 112468. doi:10.1016/j.jenvman.2021.112468
- Wang, L.; Guo, J.; Yang, G.; Yu, D.; Wang, D.; Guo, F.; Guan, W. Rational tailoring of the electronic structure for the SrxNaTayO3 semiconductor: Insights into its enhanced photoactivity and optical property. Chemosphere 2021, 273, 129748. doi:10.1016/j.chemosphere.2021.129748
- Garay-Rodríguez, L. F.; Torres-Martínez, L. M. Extending the visible-light photocatalytic CO2 reduction activity of K2Ti6O13 with the MxOy (M = Co, Ni and Cu) incorporation. Journal of Materials Science: Materials in Electronics 2020, 31, 19248–19265. doi:10.1007/s10854-020-04461-w
- Karim, K. M. R.; Tarek, M.; Sarkar, S. M.; Ong, H. R.; Abdullah, H.; Cheng, C. K.; Khan, M. M. R. Selective synthesis of methanol by photoelectrocatalytic reduction of CO2 over PANI-CuFe2O4 hybrid catalyst. IOP Conference Series: Materials Science and Engineering 2020, 736, 042020. doi:10.1088/1757-899x/736/4/042020