Cite the Following Article
Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering
Marta Espina Palanco, Klaus Bo Mogensen, Marina Gühlke, Zsuzsanna Heiner, Janina Kneipp and Katrin Kneipp
Beilstein J. Nanotechnol. 2016, 7, 834–840.
https://doi.org/10.3762/bjnano.7.75
How to Cite
Espina Palanco, M.; Bo Mogensen, K.; Gühlke, M.; Heiner, Z.; Kneipp, J.; Kneipp, K. Beilstein J. Nanotechnol. 2016, 7, 834–840. doi:10.3762/bjnano.7.75
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 658.0 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Puišo, J.; Paškevičius, A.; Žvirgždas, J.; Dimitrova, T. L.; Litvakas, A.; Adliene, D. Application of Red Onion Peel Extract for Green Synthesis of Silver Nanoparticles in Hydrogels Exhibiting Antimicrobial Properties. Gels (Basel, Switzerland) 2023, 9, 498. doi:10.3390/gels9060498
- Jiang, L.; Zhang, Y.; Kang, C.; Zhao, Z.; Chen, D.; Long, Y. Nondestructive determination of carotenoids in kiwifruit leaves infected with Pseudomonas syringae pv. actinidiae by surface‐enhanced Raman spectroscopy combined with chemical imaging. Plant Pathology 2023, 72, 1022–1033. doi:10.1111/ppa.13734
- Min, K. H.; Shin, J. W.; Ki, M.-R.; Pack, S. P. Green synthesis of silver nanoparticles on biosilica diatomite: Well-dispersed particle formation and reusability. Process Biochemistry 2023, 125, 232–238. doi:10.1016/j.procbio.2022.12.018
- Han, J.; Chen, Y.-M.; Nie, X.-B. Surface Plasmon Resonance of Silver Nanocrystals in Ethylene Glycol: Regulation by Multiple Thermodynamic Factors. Journal of Cluster Science 2022, 34, 2373–2380. doi:10.1007/s10876-022-02390-8
- Dzhagan, V.; Smirnov, O.; Kovalenko, M.; Mazur, N.; Hreshchuk, O.; Taran, N.; Plokhovska, S.; Pirko, Y.; Yemets, A.; Yukhymchuk, V.; Zahn, D. R. T. Spectroscopic Study of Phytosynthesized Ag Nanoparticles and Their Activity as SERS Substrate. Chemosensors 2022, 10, 129. doi:10.3390/chemosensors10040129
- Lee, K. S.; Landry, Z.; Pereira, F. C.; Wagner, M.; Berry, D.; Huang, W. E.; Taylor, G. T.; Kneipp, J.; Popp, J.; Zhang, M.; Cheng, J.-X.; Stocker, R. Raman microspectroscopy for microbiology. Nature Reviews Methods Primers 2021, 1, 1–25. doi:10.1038/s43586-021-00075-6
- Alzahrani, E. Colorimetric Detection of Ammonia Using Synthesized Silver Nanoparticles from Durian Fruit Shell. Journal of Chemistry 2020, 2020, 1–11. doi:10.1155/2020/4712130
- Vallepu, N.; Gaddam, S. A.; Kotakadi, V. S.; Goli, P. P.; Gopal, D. V. R. S.; Gudivada, S. Biogenic silver nanoparticles can be an effective and efficient water purification agents of future. Inorganic and Nano-Metal Chemistry 2020, 1–12. doi:10.1080/24701556.2020.1817940
- Han, J.; Chen, Y.; Nie, X. Environmentally Benign and Large-Scale Synthesis of Monodisperse Oleate-Protected Silver Nanoparticles in Ethanol. Journal of Cluster Science 2020, 32, 899–905. doi:10.1007/s10876-020-01852-1
- Langer, J.; de Aberasturi, D. J.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguié, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G.; Choo, J.; Cialla-May, D.; Deckert, V.; Fabris, L.; Faulds, K.; de Abajo, F. J. G.; Goodacre, R.; Graham, D.; Haes, A. J.; Haynes, C. L.; Huck, C. W.; Itoh, T.; Käll, M.; Kneipp, J.; Kotov, N. A.; Kuang, H.; Le Ru, E. C.; Lee, H. K.; Li, J.-F.; Ling, X. Y.; Maier, S. A.; Mayerhöfer, T. G.; Moskovits, M.; Murakoshi, K.; Nam, J.-M.; Nie, S.; Ozaki, Y.; Pastoriza-Santos, I.; Pérez-Juste, J.; Popp, J.; Pucci, A.; Reich, S.; Ren, B.; Schatz, G. C.; Shegai, T.; Schlücker, S.; Tay, L.-L.; Thomas, K. G.; Tian, Z.-Q.; Van Duyne, R. P.; Vo-Dinh, T.; Wang, Y.; Willets, K. A.; Xu, C.; Xu, H.; Xu, Y.; Yamamoto, Y. S.; Zhao, B.; Liz-Marzán, L. M. Present and Future of Surface-Enhanced Raman Scattering. ACS nano 2019, 14, 28–117. doi:10.1021/acsnano.9b04224
- Leong, K. H.; Aziz, A. A.; Sim, L. C.; Saravanan, P.; Jang, M.; Bahnemann, D. W. Mechanistic insights into plasmonic photocatalysts in utilizing visible light. Beilstein journal of nanotechnology 2018, 9, 628–648. doi:10.3762/bjnano.9.59
- Madzharova, F.; Heiner, Z.; Simke, J. R. J.; Selve, S.; Kneipp, J. Gold Nanostructures for Plasmonic Enhancement of Hyper-Raman Scattering. The Journal of Physical Chemistry C 2018, 122, 2931–2940. doi:10.1021/acs.jpcc.7b10091
- Kneipp, J.; Kneipp, K. Recent Developments in Plasmon-Supported Raman Spectroscopy: 45 Years of Enhanced Raman Signals - Plasmon-Supported Two-Photon Excited Vibrational Sensing and Imaging. Recent Developments in Plasmon-Supported Raman Spectroscopy; WORLD SCIENTIFIC (EUROPE), 2017; pp 61–88. doi:10.1142/9781786344243_0003
- Kubo, A.; Gorup, L. F.; Toffano, L.; da Silva Amaral, L.; Rodrigues-Filho, E.; Mohan, H.; Aroca, R.; Camargo, E. R. Nanostructured Assemblies of Gold and Silver Nanoparticles for Plasmon Enhanced Spectroscopy Using Living Biotemplates. Colloids and Interfaces 2017, 1, 4. doi:10.3390/colloids1010004
- Chetia, L.; Kalita, D.; Ahmed, G. A. Synthesis of Ag nanoparticles using diatom cells for ammonia sensing. Sensing and Bio-Sensing Research 2017, 16, 55–61. doi:10.1016/j.sbsr.2017.11.004
- Drescher, D.; Traub, H.; Büchner, T.; Jakubowski, N.; Kneipp, J. Properties of in situ generated gold nanoparticles in the cellular context. Nanoscale 2017, 9, 11647–11656. doi:10.1039/c7nr04620k
- Madzharova, F.; Heiner, Z.; Kneipp, J. Surface enhanced hyper Raman scattering (SEHRS) and its applications. Chemical Society reviews 2017, 46, 3980–3999. doi:10.1039/c7cs00137a