Cite the Following Article
Role of solvents in the electronic transport properties of single-molecule junctions
Katharina Luka-Guth, Sebastian Hambsch, Andreas Bloch, Philipp Ehrenreich, Bernd Michael Briechle, Filip Kilibarda, Torsten Sendler, Dmytro Sysoiev, Thomas Huhn, Artur Erbe and Elke Scheer
Beilstein J. Nanotechnol. 2016, 7, 1055–1067.
https://doi.org/10.3762/bjnano.7.99
How to Cite
Luka-Guth, K.; Hambsch, S.; Bloch, A.; Ehrenreich, P.; Briechle, B. M.; Kilibarda, F.; Sendler, T.; Sysoiev, D.; Huhn, T.; Erbe, A.; Scheer, E. Beilstein J. Nanotechnol. 2016, 7, 1055–1067. doi:10.3762/bjnano.7.99
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.1 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Shi, W.; Greenwald, J. E.; Venkataraman, L. Impact of Solvent Electrostatic Environment on Molecular Junctions Probed via Electrochemical Impedance Spectroscopy. Nano letters 2024, 24, 9283–9288. doi:10.1021/acs.nanolett.4c02103
- Raja, S. N.; Jain, S.; Kipen, J.; Jaldén, J.; Stemme, G.; Herland, A.; Niklaus, F. Electromigrated Gold Nanogap Tunnel Junction Arrays: Fabrication and Electrical Behavior in Liquid and Gaseous Media. ACS applied materials & interfaces 2024, 16, 37131–37146. doi:10.1021/acsami.4c03282
- Li, Z.; Yu, X. Reply to the 'Comment on "A single level tunneling model for molecular junctions: evaluating the simulation methods"' by I Baldea, Phys. Chem. Chem. Phys., 2024, 26, D2CP05110A (http://D2CP05110A). Physical chemistry chemical physics : PCCP 2024, 26, 7236–7238. doi:10.1039/d3cp05375j
- Bâldea, I. Can tunneling current in molecular junctions be so strongly temperature dependent to challenge a hopping mechanism? Analytical formulas answer this question and provide important insight into large area junctions. Physical chemistry chemical physics : PCCP 2024, 26, 6540–6556. doi:10.1039/d3cp05046g
- Yasini, P.; Shepard, S.; Smeu, M.; Borguet, E. Modulation of Charge Transport through Single Molecules Induced by Solvent-Stabilized Intramolecular Charge Transfer. The journal of physical chemistry. B 2023, 127, 9771–9780. doi:10.1021/acs.jpcb.3c03576
- Pabi, B.; Marek, Š.; Pal, A.; Kumari, P.; Ray, S. J.; Thakur, A.; Korytár, R.; Pal, A. N. Resonant transport in a highly conducting single molecular junction via metal-metal covalent bond. Nanoscale 2023, 15, 12995–13008. doi:10.1039/d3nr02585c
- Bâldea, I. Can room-temperature data for tunneling molecular junctions be analyzed within a theoretical framework assuming zero temperature?. Physical chemistry chemical physics : PCCP 2023, 25, 19750–19763. doi:10.1039/d3cp00740e
- Gurski, G.; Kirchberg, H.; Nalbach, P.; Thorwart, M. Hydration shell effects in ac-driven single-molecule junctions. Physical Review B 2023, 107. doi:10.1103/physrevb.107.165413
- de Ara, T.; Sabater, C.; Borja-Espinosa, C.; Ferrer-Alcaraz, P.; Baciu, B. C.; Guijarro, A.; Untiedt, C. Signature of adsorbed solvents for molecular electronics revealed via scanning tunneling microscopy. Materials Chemistry and Physics 2022, 291, 126645. doi:10.1016/j.matchemphys.2022.126645
- Opodi, E. M.; Song, X.; Yu, X.; Hu, W. A single level tunneling model for molecular junctions: evaluating the simulation methods. Physical chemistry chemical physics : PCCP 2022, 24, 11958–11966. doi:10.1039/d1cp05807j
- Kilibarda, F.; Strobel, A.; Sendler, T.; Wieser, M.; Mortensen, M. R.; Trads, J. B.; Helm, M.; Kerbusch, J.; Scheer, E.; Gemming, S.; Gothelf, K. V.; Erbe, A. Single-Molecule Doping: Conductance Changed By Transition Metal Centers in Salen Molecules. Advanced Electronic Materials 2021, 7, 2100252. doi:10.1002/aelm.202100252
- Mijbil, Z. Y. Single-molecule thermoelectric properties susceptibility to environment molecules. Molecular Simulation 2021, 47, 1059–1065. doi:10.1080/08927022.2021.1946055
- Gelin, M. F.; Kosov, D. S. A model for dynamical solvent control of molecular junction electronic properties. The Journal of chemical physics 2021, 154, 044107. doi:10.1063/5.0039328
- Nováková Lachmanová, Š.; Kolivoška, V.; Šebera, J.; Gasior, J.; Mészáros, G.; Dupeyre, G.; Lainé, P. P.; Hromadová, M. Environmental Control of Single‐Molecule Junction Evolution and Conductance: A Case Study of Expanded Pyridinium Wiring. Angewandte Chemie 2021, 133, 4782–4789. doi:10.1002/ange.202013882
- Lachmanová, Š. N.; Kolivoška, V.; Šebera, J.; Gasior, J.; Mészáros, G.; Dupeyre, G.; Lainé, P. P.; Hromadová, M. Environmental Control of Single‐Molecule Junction Evolution and Conductance. Case Study of Expanded Pyridinium Wiring. Angewandte Chemie (International ed. in English) 2021, 60, 4732–4739. doi:10.1002/anie.202013882
- Foti, G.; Vázquez, H. Adsorbate-driven cooling of carbene-based molecular junctions. Beilstein journal of nanotechnology 2017, 8, 2060–2068. doi:10.3762/bjnano.8.206
- Szarek, P. Electric Permittivity in Individual Atomic and Molecular Systems Through Direct Associations with Electric Dipole Polarizability and Chemical Hardness. The Journal of Physical Chemistry C 2017, 121, 12593–12602. doi:10.1021/acs.jpcc.7b02626
- Wu, B. H.; Ivie, J. A.; Johnson, T.; Monti, O. L. Uncovering hierarchical data structure in single molecule transport. The Journal of Chemical Physics 2017, 146, 092321. doi:10.1063/1.4974937