Synthesis, spectroscopic characterization and thermogravimetric analysis of two series of substituted (metallo)tetraphenylporphyrins

Rasha K. Al-Shewiki, Carola Mende, Roy Buschbeck, Pablo F. Siles, Oliver G. Schmidt, Tobias Rüffer and Heinrich Lang
Beilstein J. Nanotechnol. 2017, 8, 1191–1204. https://doi.org/10.3762/bjnano.8.121

Supporting Information

Supporting Information File 1 features 1H and 13C{1H} NMR spectra of 2, 2a, 2c, 3, 3a and 3c, ESIMS, UV–vis and IR spectra (ATR-IR and KBr) of 2, 2a2d, 3 and 3a3d, and IR spectra of 3b and 3d before and after OMBD together with optical photographs of the materials.

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 4.0 MB Download

Cite the Following Article

Synthesis, spectroscopic characterization and thermogravimetric analysis of two series of substituted (metallo)tetraphenylporphyrins
Rasha K. Al-Shewiki, Carola Mende, Roy Buschbeck, Pablo F. Siles, Oliver G. Schmidt, Tobias Rüffer and Heinrich Lang
Beilstein J. Nanotechnol. 2017, 8, 1191–1204. https://doi.org/10.3762/bjnano.8.121

How to Cite

Al-Shewiki, R. K.; Mende, C.; Buschbeck, R.; Siles, P. F.; Schmidt, O. G.; Rüffer, T.; Lang, H. Beilstein J. Nanotechnol. 2017, 8, 1191–1204. doi:10.3762/bjnano.8.121

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.2 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Oyim, J.; Matshitse, R.; Malomane, N.; Openda, Y. I.; Nyokong, T.; Managa, M. In vitro photoinactivation of S. aureus and E. coli using 5,10,15,20-tetrakis[4-(benzyloxy) phenyl] porphyrin and its metal derivatives conjugated to pristine graphene quantum dots. Journal of Porphyrins and Phthalocyanines 2023, 27, 634–644. doi:10.1142/s1088424623500529
  • Reddy, G.; Basak, P.; Jones, L. A.; Della Gaspera, E.; Islavath, N.; Giribabu, L. Crystalline D-π-D porphyrin molecules as a hole-transporting material for printable perovskite solar cells. Solar Energy 2020, 206, 539–547. doi:10.1016/j.solener.2020.06.040
  • Aghahuseynova, M. Synthesis and Properties of Metal-Complex Catalysts Based on Oil Metalloporphyrins. EUREKA: Physics and Engineering 2020, 4, 19–28. doi:10.21303/2461-4262.2020.001356
  • Noro, A.; Asai, H.; Higuchi, K.; Matsushita, Y. Self-Assembled Hybrids Composed of Block Copolymer/Porphyrin–Metal Complex via Hydrogen Bonding. ACS Applied Polymer Materials 2019, 1, 3432–3442. doi:10.1021/acsapm.9b00861
  • Salvan, G.; Zahn, D. R. T. Towards molecular spintronics. Beilstein journal of nanotechnology 2017, 8, 2464–2466. doi:10.3762/bjnano.8.245
  • Smykalla, L.; Mende, C.; Fronk, M.; Siles, P. F.; Hietschold, M.; Salvan, G.; Zahn, D. R. T.; Schmidt, O. G.; Rüffer, T.; Lang, H. Metallo)porphyrins for potential materials science applications. Beilstein journal of nanotechnology 2017, 8, 1786–1800. doi:10.3762/bjnano.8.180
Other Beilstein-Institut Open Science Activities