Supporting Information
Additional experimental data.
Supporting Information File 1: Relative cellular viability of DU-145 cells following monotreatment or combinatory treatment including dose-response curves. | ||
Format: PDF | Size: 53.8 KB | Download |
Cite the Following Article
Carbon nanomaterials sensitize prostate cancer cells to docetaxel and mitomycin C via induction of apoptosis and inhibition of proliferation
Kati Erdmann, Jessica Ringel, Silke Hampel, Manfred P. Wirth and Susanne Fuessel
Beilstein J. Nanotechnol. 2017, 8, 1307–1317.
https://doi.org/10.3762/bjnano.8.132
How to Cite
Erdmann, K.; Ringel, J.; Hampel, S.; Wirth, M. P.; Fuessel, S. Beilstein J. Nanotechnol. 2017, 8, 1307–1317. doi:10.3762/bjnano.8.132
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 819.6 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Dad, H.; Hansen, A. Advancements in Research on Non-AR- Signaling Pathways and Targeted Therapies for Castration-Resistant Prostate Cancer. annals of urologic oncology 2024. doi:10.32948/auo.2024.12.25
- Wang, J.; Zhang, X.; Xing, J.; Gao, L.; Lu, H. Nanomedicines in diagnosis and treatment of prostate cancers: an updated review. Frontiers in bioengineering and biotechnology 2024, 12, 1444201. doi:10.3389/fbioe.2024.1444201
- Beheshtizadeh, N.; Amiri, Z.; Tabatabaei, S. Z.; Seraji, A. A.; Gharibshahian, M.; Nadi, A.; Saeinasab, M.; Sefat, F.; Kolahi Azar, H. Boosting antitumor efficacy using docetaxel-loaded nanoplatforms: from cancer therapy to regenerative medicine approaches. Journal of translational medicine 2024, 22, 520. doi:10.1186/s12967-024-05347-9
- Garg, A.; Madamsetty, V. S.; Ashique, S.; Gauttam, V.; Mishra, N. Targeted Nanocarriers-based Approach For Prostate Cancer Therapy. Therapeutic Nanocarriers in Cancer Treatment: Challenges and Future Perspective; BENTHAM SCIENCE PUBLISHERS, 2023; pp 133–162. doi:10.2174/9789815080506123010008
- Ahlawat, P.; Kumar, R.; Kumar, A.; Gupta, P. K. Nano-Drug Carriers for Chemotherapeutic Agents Delivery in Cancer Disease Treatment. Nano Drug Delivery for Cancer Therapy; Springer Nature Singapore, 2023; pp 69–95. doi:10.1007/978-981-99-6940-1_4
- Mamidi, N.; García, R. G.; Martínez, J. D. H.; Briones, C. M.; Martínez Ramos, A. M.; Tamez, M. F. L.; Del Valle, B. G.; Segura, F. J. M. Recent Advances in Designing Fibrous Biomaterials for the Domain of Biomedical, Clinical, and Environmental Applications. ACS biomaterials science & engineering 2022, 8, 3690–3716. doi:10.1021/acsbiomaterials.2c00786
- Calatayud, D. G.; Neophytou, S.; Nicodemou, E.; Giuffrida, S. G.; Ge, H.; Pascu, S. I. Nano-Theranostics for the Sensing, Imaging and Therapy of Prostate Cancers. Frontiers in chemistry 2022, 10, 830133. doi:10.3389/fchem.2022.830133
- Freire, T. M.; Sant’Anna, C.; Yoshihara, N.; Hu, R.; Qu, J.; Alencar, L. M. R.; de Barros, A. O. d. S.; Helal-Neto, E.; Fernandes, L. R.; Simões, R. L.; Barja-Fidalgo, C.; Fechine, P. B. A.; Santos-Oliveira, R. Biomedical Application of Graphitic Carbon Nitrides: Tissue Deposition In Vivo, Induction of Reactive Oxygen Species (ROS) and Cell Viability in Tumor Cells. Nanotechnology 2021, 32, 435301. doi:10.1088/1361-6528/ac1540
- Abdo, G. G.; Zagho, M. M.; Al Moustafa, A.-E.; Khalil, A. A.; Elzatahry, A. A. A comprehensive review summarizing the recent biomedical applications of functionalized carbon nanofibers. Journal of biomedical materials research. Part B, Applied biomaterials 2021, 109, 1893–1908. doi:10.1002/jbm.b.34828
- Garg, A.; Garg, S.; Swarnakar, N. K. Nanoparticles and prostate cancer. Nano Drug Delivery Strategies for the Treatment of Cancers; Elsevier, 2021; pp 275–318. doi:10.1016/b978-0-12-819793-6.00012-6
- Cirillo, G.; Peitzsch, C.; Vittorio, O.; Curcio, M.; Farfalla, A.; Voli, F.; Dubrovska, A.; Iemma, F.; Kavallaris, M.; Hampel, S. When polymers meet carbon nanostructures: expanding horizons in cancer therapy. Future medicinal chemistry 2019, 11, 2205–2231. doi:10.4155/fmc-2018-0540
- Hosnedlova, B.; Kepinska, M.; Fernandez, C.; Peng, Q.; Ruttkay-Nedecky, B.; Milnerowicz, H.; Kizek, R. Carbon Nanomaterials for Targeted Cancer Therapy Drugs: A Critical Review. Chemical record (New York, N.Y.) 2018, 19, 502–522. doi:10.1002/tcr.201800038
- Mortimer, M.; Devarajan, N.; Li, D.; Holden, P. A. Multiwall Carbon Nanotubes Induce More Pronounced Transcriptomic Responses in Pseudomonas aeruginosa PG201 than Graphene, Exfoliated Boron Nitride, or Carbon Black. ACS nano 2018, 12, 2728–2740. doi:10.1021/acsnano.7b08977