Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers

Dong Ye, Mattia Bramini, Delyan R. Hristov, Sha Wan, Anna Salvati, Christoffer Åberg and Kenneth A. Dawson
Beilstein J. Nanotechnol. 2017, 8, 1396–1406. https://doi.org/10.3762/bjnano.8.141

Supporting Information

Supporting Information File 1: Supplementary methods and figures.
Format: PDF Size: 1.4 MB Download

Cite the Following Article

Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers
Dong Ye, Mattia Bramini, Delyan R. Hristov, Sha Wan, Anna Salvati, Christoffer Åberg and Kenneth A. Dawson
Beilstein J. Nanotechnol. 2017, 8, 1396–1406. https://doi.org/10.3762/bjnano.8.141

How to Cite

Ye, D.; Bramini, M.; Hristov, D. R.; Wan, S.; Salvati, A.; Åberg, C.; Dawson, K. A. Beilstein J. Nanotechnol. 2017, 8, 1396–1406. doi:10.3762/bjnano.8.141

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 913.9 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Iriarte‐Mesa, C.; Bergen, J.; Danielyan, K.; Crudo, F.; Marko, D.; Kählig, H.; Del Favero, G.; Kleitz, F. Functionalization of Silica Nanoparticles for Tailored Interactions with Intestinal Cells and Chemical Modulation of Paracellular Permeability. Small Science 2024, 5. doi:10.1002/smsc.202400112
  • Rosa, M. A.; Granja, A.; Nunes, C.; Reis, S.; da Silva, A. B. S.; Leal, K. N. d. S.; Arruda, M. A. Z.; Gorup, L. F.; Santos, M. G.; Dias, M. V. S.; Figueiredo, E. C. Magnetic carbon nanotubes modified with proteins and hydrophilic monomers: Cytocompatibility, in-vitro toxicity assays and permeation across biological interfaces. International journal of biological macromolecules 2024, 269, 131962. doi:10.1016/j.ijbiomac.2024.131962
  • Bianchi, M. G.; Chiu, M.; Taurino, G.; Bergamaschi, E.; Turroni, F.; Mancabelli, L.; Longhi, G.; Ventura, M.; Bussolati, O. Amorphous silica nanoparticles and the human gut microbiota: a relationship with multiple implications. Journal of nanobiotechnology 2024, 22, 45. doi:10.1186/s12951-024-02305-x
  • Zhou, L.; Shang, Y.; Wang, Y.; Wei, X. Transferrin modified PEG–PLGA nanoparticles: highly effective notoginsenoside R1 formulations for the treatment of ulcerative colitis. Journal of Pharmaceutical Investigation 2024, 54, 357–373. doi:10.1007/s40005-023-00657-4
  • Erstling, J. A.; Bag, N.; Gardinier, T. C.; Kohle, F. F. E.; DomNwachukwu, N.; Butler, S. D.; Kao, T.; Ma, K.; Turker, M. Z.; Feuer, G. B.; Lee, R.; Naguib, N.; Tallman, J. F.; Malarkey, H. F.; Tsaur, L.; Moore, W. L.; Chapman, D. V.; Aubert, T.; Mehta, S.; Cerione, R. A.; Weiss, R. S.; Baird, B. A.; Wiesner, U. B. Overcoming Barriers Associated with Oral Delivery of Differently Sized Fluorescent Core-Shell Silica Nanoparticles. Advanced materials (Deerfield Beach, Fla.) 2023, 36, e2305937. doi:10.1002/adma.202305937
  • Schmid, R.; Volcic, M.; Fischer, S.; Qu, Z.; Barth, H.; Popat, A.; Kirchhoff, F.; Lindén, M. Surface functionalization affects the retention and bio-distribution of orally administered mesoporous silica nanoparticles in a colitis mouse model. Scientific reports 2023, 13, 20175. doi:10.1038/s41598-023-47445-6
  • Susnik, E.; Balog, S.; Taladriz-Blanco, P.; Petri-Fink, A.; Rothen-Rutishauser, B. The Functions of Cholera Toxin Subunit B as a Modulator of Silica Nanoparticle Endocytosis. Toxins 2023, 15, 482. doi:10.3390/toxins15080482
  • Sousa Ribeiro, I. R.; da Silva, R. F.; Rabelo, R. S.; Marin, T. M.; Bettini, J.; Cardoso, M. B. Flowing through Gastrointestinal Barriers with Model Nanoparticles: From Complex Fluids to Model Human Intestinal Epithelium Permeation. ACS applied materials & interfaces 2023, 15, 36025–36035. doi:10.1021/acsami.3c07048
  • Vital, N.; Ventura, C.; Kranendonk, M.; Silva, M. J.; Louro, H. Toxicological Assessment of Cellulose Nanomaterials: Oral Exposure. Nanomaterials (Basel, Switzerland) 2022, 12, 3375. doi:10.3390/nano12193375
  • Mortensen, N. P.; Moreno Caffaro, M.; Davis, K.; Aravamudhan, S.; Sumner, S. J.; Fennell, T. R. Investigation of eight cellulose nanomaterials' impact on Differentiated Caco-2 monolayer integrity and cytotoxicity. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 2022, 166, 113204. doi:10.1016/j.fct.2022.113204
  • Reboredo, C.; González-Navarro, C. J.; Martínez-López, A. L.; Martínez-Ohárriz, C.; Sarmento, B.; Irache, J. M. Zein-Based Nanoparticles as Oral Carriers for Insulin Delivery. Pharmaceutics 2021, 14, 39. doi:10.3390/pharmaceutics14010039
  • Winckers, L. A.; Evelo, C. T.; Willighagen, E.; Kutmon, M. Investigating the Molecular Processes behind the Cell-Specific Toxicity Response to Titanium Dioxide Nanobelts. International journal of molecular sciences 2021, 22, 9432. doi:10.3390/ijms22179432
  • Poyatos-Racionero, E.; González-Álvarez, I.; Sánchez-Moreno, P.; Sitia, L.; Gatto, F.; Pompa, P. P.; Aznar, E.; González-Álvarez, M.; Martínez-Máñez, R.; Marcos, M. D.; Bernardos, A. Lactose-Gated Mesoporous Silica Particles for Intestinal Controlled Delivery of Essential Oil Components: An In Vitro and In Vivo Study. Pharmaceutics 2021, 13, 982. doi:10.3390/pharmaceutics13070982
  • Ogawa, T.; Okumura, R.; Nagano, K.; Minemura, T.; Izumi, M.; Motooka, D.; Nakamura, S.; Iida, T.; Maeda, Y.; Kumanogoh, A.; Tsutsumi, Y.; Takeda, K. Oral intake of silica nanoparticles exacerbates intestinal inflammation. Biochemical and biophysical research communications 2020, 534, 540–546. doi:10.1016/j.bbrc.2020.11.047
  • Hempt, C.; Kaiser, J.-P.; Scholder, O.; Buerki-Thurnherr, T.; Hofmann, H.; Rippl, A.; Schuster, T. B.; Wick, P.; Hirsch, C. The impact of synthetic amorphous silica (E 551) on differentiated Caco-2 cells, a model for the human intestinal epithelium. Toxicology in vitro : an international journal published in association with BIBRA 2020, 67, 104903. doi:10.1016/j.tiv.2020.104903
  • Tada-Oikawa, S.; Eguchi, M.; Yasuda, M. T.; Izuoka, K.; Ikegami, A.; Vranic, S.; Boland, S.; Tran, L.; Ichihara, G.; Ichihara, S. Functionalized Surface-Charged SiO2 Nanoparticles Induce Pro-Inflammatory Responses, but Are Not Lethal to Caco-2 Cells. Chemical research in toxicology 2020, 33, 1226–1236. doi:10.1021/acs.chemrestox.9b00478
  • Cui, X.; Bao, L.; Wang, X.; Chen, C. The Nano-Intestine Interaction: Understanding the Location-Oriented Effects of Engineered Nanomaterials in the Intestine. Small (Weinheim an der Bergstrasse, Germany) 2020, 16, 1907665. doi:10.1002/smll.201907665
  • Cornu, R.; Chrétien, C.; Pellequer, Y.; Martin, H.; Béduneau, A. Small silica nanoparticles transiently modulate the intestinal permeability by actin cytoskeleton disruption in both Caco-2 and Caco-2/HT29-MTX models. Archives of toxicology 2020, 94, 1191–1202. doi:10.1007/s00204-020-02694-6
  • Mortensen, N. P.; Caffaro, M. M.; Patel, P. R.; Uddin, J.; Aravamudhan, S.; Sumner, S.; Fennell, T. R. Investigation of Twenty Metal, Metal Oxide, and Metal Sulfide Nanoparticles' Impact on Differentiated Caco-2 Monolayer Integrity. NanoImpact 2020, 17, 100212. doi:10.1016/j.impact.2020.100212
  • Kobos, L.; Shannahan, J. H. Biocorona-induced modifications in engineered nanomaterial-cellular interactions impacting biomedical applications. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 2019, 12, e1608. doi:10.1002/wnan.1608
Other Beilstein-Institut Open Science Activities