Development of a nitrogen-doped 2D material for tribological applications in the boundary-lubrication regime

Shende Rashmi Chandrabhan, Velayudhanpillai Jayan, Somendra Singh Parihar and Sundara Ramaprabhu
Beilstein J. Nanotechnol. 2017, 8, 1476–1483. https://doi.org/10.3762/bjnano.8.147

Supporting Information

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 339.0 KB Download

Cite the Following Article

Development of a nitrogen-doped 2D material for tribological applications in the boundary-lubrication regime
Shende Rashmi Chandrabhan, Velayudhanpillai Jayan, Somendra Singh Parihar and Sundara Ramaprabhu
Beilstein J. Nanotechnol. 2017, 8, 1476–1483. https://doi.org/10.3762/bjnano.8.147

How to Cite

Chandrabhan, S. R.; Jayan, V.; Parihar, S. S.; Ramaprabhu, S. Beilstein J. Nanotechnol. 2017, 8, 1476–1483. doi:10.3762/bjnano.8.147

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.2 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Loh, N. Y. L.; Tee, W. T.; Hiew, B. Y. Z.; Hanson, S.; Gan, S.; Lee, L. Y. Synthesis, Properties and Applications of Graphene and Related Materials. Elemental Carbon; Royal Society of Chemistry, 2024; pp 81–154. doi:10.1039/9781839169984-00081
  • Macit, C. K.; Horlu, M.; Aksakal, B.; Er, Y. Synthesis of Copper Matrix Hybrid Composites with Boron‐, Nitrogen‐, and Silicon‐Doped Reduced Graphene Oxide by Hot Press Technique: Investigation of Tribological, Mechanical, and Electrical Conductivity Properties. Advanced Engineering Materials 2024. doi:10.1002/adem.202401670
  • Chhabra, P.; Johari, A. doi:10.1002/9781119865698.ch3
  • Singh, S.; Chauhan, A. S.; Prasad, L. doi:10.1002/9781119865698.ch2
  • Dağıdır, K.; Bilen, K. Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor. Beilstein journal of nanotechnology 2023, 14, 1041–1058. doi:10.3762/bjnano.14.86
  • Li, J.; Jia, R.; Zhao, X. Electrochemical sensing for rapid detection of nandrolone as a doping agent in food commodities using Nitrogen doped-reduced graphene oxide modified electrode. Journal of Food Measurement and Characterization 2023, 18, 744–755. doi:10.1007/s11694-023-02222-x
  • Htwe, Y. Z. N.; Al-Janabi, A. S.; Wadzer, Y.; Mamat, H. Review of tribological properties of nanoparticle-based lubricants and their hybrids and composites. Friction 2023, 12, 569–590. doi:10.1007/s40544-023-0774-2
  • Paul, G.; Jha, P.; Jha, A.; Roy, A. Effect of Molybdenum Disulfide Dispersed Nanolubricants on the Tribological Properties of Mating Stainless Steel Pair. Journal of Materials Engineering and Performance 2023, 33, 5291–5305. doi:10.1007/s11665-023-08483-3
  • Zhang, L.; Li, N. Tribological investigation of graphene or/and MoDTC as additives in PAO base oil. Diamond and Related Materials 2023, 136, 110043. doi:10.1016/j.diamond.2023.110043
  • Gao, Q.; Liu, S.; Hou, K.; Li, Z.; Wang, J. Graphene-Based Nanomaterials as Lubricant Additives: A Review. Lubricants 2022, 10, 273. doi:10.3390/lubricants10100273
  • Zhao, J.; Tong, G.; Yingru, L.; He, Y.; Shi, Y. Two-dimensional (2D) graphene nanosheets as advanced lubricant additives: A critical review and prospect. Materials Today Communications 2021, 29, 102755. doi:10.1016/j.mtcomm.2021.102755
  • Ta, H. T. T.; Tieu, A. K.; Zhu, H.; Yu, H.; Tran, N. V. A First-Principles Study of Impurity-Enhanced Adhesion and Lubricity of Graphene on Iron Oxide Surface. The Journal of Physical Chemistry C 2021, 125, 4310–4321. doi:10.1021/acs.jpcc.1c00046
  • Bhanvase, B. A.; Barai, D. P. Nanofluids for Heat and Mass Transfer - Other applications of nanofluids. Nanofluids for Heat and Mass Transfer; Elsevier, 2021; pp 415–432. doi:10.1016/b978-0-12-821955-3.00012-1
  • Sagar, V. K.; Bhattacharya, S.; Dey, S.; Bisht, P. B. Optical characterization of graphene-f-o-phenylenediamine and charge transfer interaction with organic dyes. Carbon 2020, 166, 15–25. doi:10.1016/j.carbon.2020.05.026
  • Ranjan, N.; Shende, R. C.; Kamaraj, M.; Ramaprabhu, S. Utilization of TiO2/gC3N4 nanoadditive to boost oxidative properties of vegetable oil for tribological application. Friction 2020, 9, 273–287. doi:10.1007/s40544-019-0336-9
  • Song, W.; Chen, P.; Yan, J.; Zhu, W.; Ji, H. The Tribological Properties of Reduced Graphene Oxide Doped by N and B Species with Different Configurations. ACS applied materials & interfaces 2020, 12, 29737–29746. doi:10.1021/acsami.0c03467
  • He, Z.; Min, C.; Yang, Y.; Zhang, K.; Dong, C.; Zhou, Y.; Shen, W. Synthesis by partial oxygenation of graphite-like carbon nitride (OCN) decorated with oleic diethanolamide borate (ODAB) for oil-based lubricant additives and its tribological properties. New Journal of Chemistry 2020, 44, 5377–5385. doi:10.1039/d0nj00726a
  • Sivakumar, B.; Ranjan, N.; Ramaprabhu, S.; Kamaraj, M. Tribological properties of graphite oxide derivative as nano-additive: Synthesized from the waster carbon source. Tribology International 2020, 142, 105990. doi:10.1016/j.triboint.2019.105990
  • Bhaumik, S.; Pathak, S.; Dey, S.; Datta, S. Artificial intelligence based design of multiple friction modifiers dispersed castor oil and evaluating its tribological properties. Tribology International 2019, 140, 105813. doi:10.1016/j.triboint.2019.06.006
  • Paul, G.; Shit, S.; Hirani, H.; Kuila, T.; Murmu, N. C. Tribological behavior of dodecylamine functionalized graphene nanosheets dispersed engine oil nanolubricants. Tribology International 2019, 131, 605–619. doi:10.1016/j.triboint.2018.11.012
Other Beilstein-Institut Open Science Activities