Cite the Following Article
Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion
Amit Singhania and Shipra Mital Gupta
Beilstein J. Nanotechnol. 2017, 8, 1546–1552.
https://doi.org/10.3762/bjnano.8.156
How to Cite
Singhania, A.; Gupta, S. M. Beilstein J. Nanotechnol. 2017, 8, 1546–1552. doi:10.3762/bjnano.8.156
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 227.1 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Khomenkova, L.; Marchylo, O.; Polishchuk, Y.; Ponomaryov, S.; Isaieva, O.; Vorona, I.; Melnichuk, L.; Portier, X.; Melnichuk, O.; Korsunska, N. Effect of dopant loading and calcination conditions on structural and optical properties of ZrO2 nanopowders doped with copper and yttrium. Materials Research Express 2024, 11, 65005–065005. doi:10.1088/2053-1591/ad51d9
- Liu, C.; Lin, L.; Wu, H.; Liu, Y.; Mu, R.; Fu, Q. Activating lattice oxygen of single-layer ZnO for the catalytic oxidation reaction. Physical chemistry chemical physics : PCCP 2023, 25, 20121–20127. doi:10.1039/d3cp02580b
- Bi, F.; Zhao, Z.; Yang, Y.; Gao, W.; Liu, N.; Huang, Y.; Zhang, X. Chlorine-Coordinated Pd Single Atom Enhanced the Chlorine Resistance for Volatile Organic Compound Degradation: Mechanism Study. Environmental science & technology 2022, 56, 17321–17330. doi:10.1021/acs.est.2c06886
- Kim, S. B.; Shin, J. H.; Kim, G. J.; Hong, S. C. Promoting Metal–Support Interaction on Pt/TiO2 Catalyst by Antimony for Enhanced Carbon Monoxide Oxidation Activity at Room Temperature. Industrial & Engineering Chemistry Research 2022, 61, 14793–14803. doi:10.1021/acs.iecr.2c01518
- Ntola, P.; Friedrich, H. B.; Mahomed, A. S.; Olivier, E. J.; Govender, A.; Singh, S. Exploring the role of fuel on the microstructure of VOx/MgO powders prepared using solution combustion synthesis. Materials Chemistry and Physics 2022, 278, 125602. doi:10.1016/j.matchemphys.2021.125602
- Hussain, I.; Jalil, A. A.; Hamid, M.; Hassan, N. Recent advances in catalytic systems in the prism of physicochemical properties to remediate toxic CO pollutants: A state-of-the-art review. Chemosphere 2021, 277, 130285. doi:10.1016/j.chemosphere.2021.130285
- Xiang, D.; Wang, J.; Zhang, X. Synthesis of Highly Efficient CuCeZr Catalyst Derived from UiO-66 Precursor for CO Oxidation. Catalysis Letters 2020, 150, 2630–2639. doi:10.1007/s10562-020-03164-5
- Wang, L.; Yin, G.; Yang, Y.; Zhang, X. Enhanced CO oxidation and toluene oxidation on CuCeZr catalysts derived from UiO-66 metal organic frameworks. Reaction Kinetics, Mechanisms and Catalysis 2019, 128, 193–204. doi:10.1007/s11144-019-01623-8
- Bera, P. Solution Combustion Synthesis as a Novel Route to Preparation of Catalysts. International Journal of Self-Propagating High-Temperature Synthesis 2019, 28, 77–109. doi:10.3103/s106138621902002x
- Bin Kim, S.; Kim, M. S.; Kim, W.; Hong, S. C.
- Singhania, A.; Gupta, S. M. Highly Active CeO 2 Nanocatalysts for Low-Temperature CO Oxidation. Russian Journal of Physical Chemistry A 2018, 92, 1900–1906. doi:10.1134/s0036024418100321
- Singhania, A.; Bhaskarwar, A. N. Synthesis, Characterization and Catalytic Activity of CeO2 and Ir-doped CeO2 Nanoparticles for Hydrogen Iodide Decomposition. Chemistry Letters 2018, 47, 1224–1227. doi:10.1246/cl.180427
- Singhania, A.; Bhaskarwar, A. N. TiO2 as a catalyst for hydrogen production from hydrogen-iodide in thermo-chemical water-splitting sulfur-iodine cycle. Fuel 2018, 221, 393–398. doi:10.1016/j.fuel.2018.02.130
- Singhania, A.; Gupta, S. M. CeO2−xNx Solid Solutions: Synthesis, Characterization, Electronic Structure and Catalytic Study for CO Oxidation. Catalysis Letters 2018, 148, 2001–2007. doi:10.1007/s10562-018-2419-z
- Sun, L.; Zhu, J.; Wei, M.; Zhang, C.; Song, Y.; Qi, P. Effect of zirconia nanoparticles on the rheological properties of silica-based shear thickening fluid. Materials Research Express 2018, 5, 055705. doi:10.1088/2053-1591/aac255
- Singhania, A.; Bhaskarwar, A. N. Performance of Activated‐Carbon‐Supported Ni, Co, and Ni–Co Catalysts for Hydrogen Iodide Decomposition in a Thermochemical Water‐Splitting Sulfur–Iodine Cycle. Energy Technology 2018, 6, 1104–1111. doi:10.1002/ente.201700752
- Singhania, A.; Bhaskarwar, A. N. Effect of rare earth (RE – La, Pr, Nd) metal-doped ceria nanoparticles on catalytic hydrogen iodide decomposition for hydrogen production. International Journal of Hydrogen Energy 2018, 43, 4818–4825. doi:10.1016/j.ijhydene.2018.01.096
- Singhania, A.; Gupta, S. M. Low-Temperature CO Oxidation: Effect of the Second Metal on Activated Carbon Supported Pd Catalysts. Catalysis Letters 2018, 148, 946–952. doi:10.1007/s10562-018-2298-3
- Singhania, A.; Bhaskarwar, A. N.; Damaraju, P.; Banerjee, S.; Bhargava, B. Correction to: Catalytic Decomposition of Hydrogen-Iodide Over Nanocrystalline Ceria Promoted by Transition Metal Oxides for Hydrogen Production in Sulfur–Iodine Thermo-Chemical Cycle. Catalysis Letters 2017, 148, 1416–1422.
- Singhania, A. Catalytic Decomposition of Hydrogen-Iodide Over Nanocrystalline Ceria Promoted by Transition Metal Oxides for Hydrogen Production in Sulfur–Iodine Thermo-Chemical Cycle. Catalysis Letters 2017, 148, 1416–1422. doi:10.1007/s10562-017-2240-0