Supporting Information
The supporting information includes FTIR methods and spectra, additional rheometry and CD data, DSC data, and additional TEM images for the gradual pH change experiments.
Supporting Information File 1: Additional experimental information. | ||
Format: PDF | Size: 1.6 MB | Download |
Cite the Following Article
Luminescent supramolecular hydrogels from a tripeptide and nitrogen-doped carbon nanodots
Maria C. Cringoli, Slavko Kralj, Marina Kurbasic, Massimo Urban and Silvia Marchesan
Beilstein J. Nanotechnol. 2017, 8, 1553–1562.
https://doi.org/10.3762/bjnano.8.157
How to Cite
Cringoli, M. C.; Kralj, S.; Kurbasic, M.; Urban, M.; Marchesan, S. Beilstein J. Nanotechnol. 2017, 8, 1553–1562. doi:10.3762/bjnano.8.157
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 553.7 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Rozhin, P.; Adorinni, S.; Iglesias, D.; Mackiol, T.; Kralj, S.; Bisetto, M.; Abrami, M.; Grassi, M.; Bevilacqua, M.; Fornasiero, P.; Marchesan, S. Nanocomposite Hydrogels with Self-Assembling Peptide-Functionalized Carbon Nanostructures. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, 29, e202301708. doi:10.1002/chem.202301708
- Elkodous, M. A.; Olojede, S. O.; Sahoo, S.; Kumar, R. Recent advances in modification of novel carbon-based composites: Synthesis, properties, and biotechnological/ biomedical applications. Chemico-biological interactions 2023, 379, 110517. doi:10.1016/j.cbi.2023.110517
- Rozhin, P.; Kralj, S.; Soula, B.; Marchesan, S.; Flahaut, E. Hydrogels from a Self-Assembling Tripeptide and Carbon Nanotubes (CNTs): Comparison between Single-Walled and Double-Walled CNTs. Nanomaterials (Basel, Switzerland) 2023, 13, 847. doi:10.3390/nano13050847
- Srivastava, V. Nanocellulose in Industrial Wastewater Treatment: An Overview. Water Science and Technology Library; Springer International Publishing, 2022; pp 209–236. doi:10.1007/978-3-030-98202-7_8
- Tirkey, A. S.; Vhatkar, S. S.; Oraon, R. Integration of geospatial technology for mapping of algae: an economical perspective for assessing nanocellulose. Nanocellulose Materials; Elsevier, 2022; pp 289–310. doi:10.1016/b978-0-12-823963-6.00015-6
- Rozhin, P.; Charitidis, C. A.; Marchesan, S. Self-Assembling Peptides and Carbon Nanomaterials Join Forces for Innovative Biomedical Applications. Molecules (Basel, Switzerland) 2021, 26, 4084. doi:10.3390/molecules26134084
- Giraud, T.; Bouguet-Bonnet, S.; Stébé, M.-J.; Richaudeau, L.; Pickaert, G.; Averlant-Petit, M.-C.; Stefan, L. Co-assembly and multicomponent hydrogel formation upon mixing nucleobase-containing peptides. Nanoscale 2021, 13, 10566–10578. doi:10.1039/d1nr02417e
- Adorinni, S.; Cringoli, M. C.; Perathoner, S.; Fornasiero, P.; Marchesan, S. Green Approaches to Carbon Nanostructure-Based Biomaterials. Applied Sciences 2021, 11, 2490. doi:10.3390/app11062490
- Rybarczyk, M. K.; Gontarek-Castro, E.; Ollik, K.; Lieder, M. Biomass-Derived Nitrogen Functionalized Carbon Nanodots and Their Anti-Biofouling Properties. Processes 2020, 9, 61. doi:10.3390/pr9010061
- Cringoli, M. C.; Marchesan, S. CHAPTER 6:The Use of d-Amino Acids for Peptide Self-assembled Systems. Peptide-based Biomaterials; The Royal Society of Chemistry, 2020; pp 174–216. doi:10.1039/9781839161148-00174
- Wang, Y.; Zhang, W.; Gong, C.; Liu, B.; Li, Y.; Wang, L.; Su, Z.; Wei, G. Recent advances in the fabrication, functionalization, and bioapplications of peptide hydrogels. Soft matter 2020, 16, 10029–10045. doi:10.1039/d0sm00966k
- Filippini, G.; Amato, F.; Rosso, C.; Ragazzon, G.; Vega-Peñaloza, A.; Companyó, X.; Dell'Amico, L.; Bonchio, M.; Prato, M. Mapping the Surface Groups of Amine-Rich Carbon Dots Enables Covalent Catalysis in Aqueous Media. Chem 2020, 6, 3022–3037. doi:10.1016/j.chempr.2020.08.009
- Giraud, T.; Bouguet-Bonnet, S.; Marchal, P.; Pickaert, G.; Averlant-Petit, M.-C.; Stefan, L. Improving and fine-tuning the properties of peptide-based hydrogels via incorporation of peptide nucleic acids. Nanoscale 2020, 12, 19905–19917. doi:10.1039/d0nr03483e
- Tavakoli, J.; Raston, C. L.; Tang, Y. Tuning Surface Morphology of Fluorescent Hydrogels Using a Vortex Fluidic Device. Molecules (Basel, Switzerland) 2020, 25, 3445. doi:10.3390/molecules25153445
- Rajakumar, G.; Zhang, X.; Gomathi, T.; Wang, S.; Ansari, M. A.; Mydhili, G.; Nirmala, G.; Alzohairy, M. A.; Chung, I.-M. Current Use of Carbon-Based Materials for Biomedical Applications—A Prospective and Review. Processes 2020, 8, 355. doi:10.3390/pr8030355
- You, Y.; Xing, R.; Zou, Q.; Shi, F.; Yan, X. High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide. Beilstein journal of nanotechnology 2019, 10, 1894–1901. doi:10.3762/bjnano.10.184
- Parisi, E.; Garcia, A. M.; Marson, D.; Posocco, P.; Marchesan, S. Supramolecular Tripeptide Hydrogel Assembly with 5-Fluorouracil. Gels (Basel, Switzerland) 2019, 5, 5. doi:10.3390/gels5010005
- Tadyszak, K.; Wychowaniec, J. K.; Litowczenko, J. Biomedical Applications of Graphene-Based Structures. Nanomaterials (Basel, Switzerland) 2018, 8, 944. doi:10.3390/nano8110944
- Shak, K. P. Y.; Pang, Y. L.; Mah, S.-K. Nanocellulose: Recent advances and its prospects in environmental remediation. Beilstein journal of nanotechnology 2018, 9, 2479–2498. doi:10.3762/bjnano.9.232
- Iglesias, D.; Melle-Franco, M.; Kurbasic, M.; Melchionna, M.; Abrami, M.; Grassi, M.; Prato, M.; Marchesan, S. Oxidized Nanocarbons-Tripeptide Supramolecular Hydrogels: Shape Matters!. ACS nano 2018, 12, 5530–5538. doi:10.1021/acsnano.8b01182