Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition

Christine Cheng and Malancha Gupta
Beilstein J. Nanotechnol. 2017, 8, 1629–1636. https://doi.org/10.3762/bjnano.8.162

Cite the Following Article

Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition
Christine Cheng and Malancha Gupta
Beilstein J. Nanotechnol. 2017, 8, 1629–1636. https://doi.org/10.3762/bjnano.8.162

How to Cite

Cheng, C.; Gupta, M. Beilstein J. Nanotechnol. 2017, 8, 1629–1636. doi:10.3762/bjnano.8.162

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.9 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Bacheller, S.; Gupta, M. Vapor Phase Deposition of Porous Polymer Dendrites. ACS Applied Polymer Materials 2024, 6, 7897–7903. doi:10.1021/acsapm.4c01527
  • Hubesch, R.; Malik, U.; Selvakannan, P.; Mannepalli, L. K.; Bhargava, S. K. Oberflächenmodifikation von additiv hergestellten Materialien: Hinzufügen von Funktionalität als vierte Dimension. Additive Fertigung für Chemiewissenschaften und Chemieingenieurwesen; Springer Nature Singapore, 2024; pp 155–189. doi:10.1007/978-981-97-0978-6_6
  • Rud, P.; Chapek, S.; Medvedev, P.; Polozhentsev, O.; Soldatov, S.; Bagliy, A.; Guda, A.; Soldatov, A.; Soldatov, M. 3D printed cell for the in situ dynamic light scattering monitoring of nanoparticle size distribution in microfluidics. Microchemical Journal 2024, 196, 109659. doi:10.1016/j.microc.2023.109659
  • Harun-Ur-Rashid, M.; Imran, A. B.; Susan, M. A. B. H. Emerging 3D Printed Polymers and Composites for Water Quality Preservation. Reference Module in Materials Science and Materials Engineering; Elsevier, 2024. doi:10.1016/b978-0-323-95486-0.00010-7
  • Song, Q.; Zhu, M.; Chen, X.; Liu, T.; Xie, M.; Mao, Y. Flexible membranes fabricated by initiated chemical vapor deposition for water treatment, battery, and drug delivery. Chemical Engineering Journal 2023, 477, 146911. doi:10.1016/j.cej.2023.146911
  • Shapovalov, V.; Chapek, S.; Tereshchenko, A.; Bulgakov, A.; Bagliy, A.; Volkov, V.; Konarev, P.; Soldatov, M.; Soldatov, S.; Guda, A.; Soldatov, A. 3D-printed microfluidic system for the in situ diagnostics and screening of nanoparticles synthesis parameters. Micro and Nano Engineering 2023, 20, 100224. doi:10.1016/j.mne.2023.100224
  • Gonzalez, G.; Arévalo, M.; Chiappone, A.; Martínez Campos, E.; Pirri, C. F.; Roppolo, I.; Bosch, P. A Facile and Green Microwave‐Assisted Strategy to Induce Surface Properties on Complex‐Shape Polymeric 3D Printed Structures. Macromolecular Materials and Engineering 2023, 308. doi:10.1002/mame.202300118
  • Rocha-Cuervo, J. J.; Uribe-Lam, E.; Treviño-Quintanilla, C. D.; Melo-Maximo, D. V. Sputtering Plasma Effect on Zinc Oxide Thin Films Produced on Photopolymer Substrates. Polymers 2023, 15, 2283. doi:10.3390/polym15102283
  • Welchert, N. A.; Swarup, J. V.; Gupta, R. S.; Gupta, M. Branched nozzle oblique angle flow for initiated chemical vapor deposition. Journal of Vacuum Science & Technology A 2023, 41. doi:10.1116/6.0002349
  • Keane, G.; Healy, A.; Devine, D. Post-processing methods for 3D printed biopolymers. Additive Manufacturing of Biopolymers; Elsevier, 2023; pp 229–264. doi:10.1016/b978-0-323-95151-7.00006-5
  • Calin, B. S.; Paun, I. A. A Review on Stimuli-Actuated 3D Micro/Nanostructures for Tissue Engineering and the Potential of Laser-Direct Writing via Two-Photon Polymerization for Structure Fabrication. International journal of molecular sciences 2022, 23, 14270. doi:10.3390/ijms232214270
  • Hubesch, R.; Malik, U.; Selvakannan, P.; Mannepalli, L. K.; Bhargava, S. K. Surface Modification of Additively Manufactured Materials: Adding Functionality as Fourth Dimension. Additive Manufacturing for Chemical Sciences and Engineering; Springer Nature Singapore, 2022; pp 137–168. doi:10.1007/978-981-19-2293-0_6
  • Kim, M.; Park, J.; Nonnenmann, S. S.; Bradley, L. C. Liquid Crystalline Polymer Coatings Fabricated by Initiated Chemical Vapor Deposition. Advanced Materials Interfaces 2022, 9. doi:10.1002/admi.202201105
  • Schröder, S.; Ababii, N.; Lupan, O.; Drewes, J.; Magariu, N.; Krüger, H.; Strunskus, T.; Adelung, R.; Hansen, S.; Faupel, F. Sensing performance of CuO/Cu2O/ZnO:Fe heterostructure coated with thermally stable ultrathin hydrophobic PV3D3 polymer layer for battery application. Materials Today Chemistry 2022, 23, 100642. doi:10.1016/j.mtchem.2021.100642
  • Yusoff, N. H. M.; Teo, L.-R. I.; Phang, S. J.; Wong, V. L.; Cheah, K. H.; Lim, S. S. Recent Advances in Polymer-based 3D Printing for Wastewater Treatment Application: An Overview. Chemical Engineering Journal 2022, 429, 132311. doi:10.1016/j.cej.2021.132311
  • Chen, Y.; Xiao, T.; Hu, M.; Wang, N.; Pan, L.; Ling, X.; Gao, Y. Charge Manipulation Based Selective Functionalization of 3D Printed Structures for Functional Devices. Advanced Materials Technologies 2021, 7. doi:10.1002/admt.202100694
  • Dizon, J. R. C.; Gache, C. C. L.; Cascolan, H. M. S.; Cancino, L. T.; Advincula, R. C. Post-Processing of 3D-Printed Polymers. Technologies 2021, 9, 61. doi:10.3390/technologies9030061
  • Warr, C. A.; Hinnen, H. S.; Avery, S.; Cate, R. J.; Nordin, G. P.; Pitt, W. G. 3D-Printed Microfluidic Droplet Generator with Hydrophilic and Hydrophobic Polymers. Micromachines 2021, 12, 91. doi:10.3390/mi12010091
  • Welchert, N. A.; Cheng, C.; Karandikar, P.; Gupta, M. Oblique angle initiated chemical vapor deposition for patterning film growth. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2020, 38, 063405. doi:10.1116/6.0000524
  • Paun, I. A.; Mustaciosu, C. C.; Popescu, R. C.; Călin, B. Ş.; Mihailescu, M. Collagen/Chitosan Functionalization of Complex 3D Structures Fabricated by Laser Direct Writing via Two-Photon Polymerization for Enhanced Osteogenesis. International journal of molecular sciences 2020, 21, 6426. doi:10.3390/ijms21176426

Patents

  • LUND BENJAMIN ROBERT; LUND CALEB; HAN XUN. Using occluding fluids to augment additive manufacturing processes. US 11986994 B2, May 21, 2024.
  • LUND BENJAMIN ROBERT; LUND CALEB; HAN XUN. Using occluding fluids to augment additive manufacturing processes. US 11911956 B2, Feb 27, 2024.
  • LUND BENJAMIN R; VOIT WALTER. Sealed isocyanates. US 11739177 B2, Aug 29, 2023.
  • LUND BENJAMIN R; VOIT WALTER. Sealed isocyanates. US 11697706 B2, July 11, 2023.
  • LUND BENJAMIN R; VOIT WALTER. Sealed isocyanates. US 11655332 B2, May 23, 2023.
  • LUND BENJAMIN; HUFFSTETLER JESSE; ZAMORANO DANIEL; DAS SUSHANTA; NIERMANN CRYSTAL; LUND CALEB; NGUYEN AMY; WU YILI; VOIT WALTER. THIOL-ACRYLATE POLYMERS, METHODS OF SYNTHESIS THEREOF AND USE IN ADDITIVE MANUFACTURING TECHNOLOGIES. WO 2019191509 A1, Oct 3, 2019.
Other Beilstein-Institut Open Science Activities