Supporting Information
Supporting Information File 1:
Additional AFM images.
The supporting information shows AFM images of the air–water interface and the corresponding 3D representations obtained with different set points. |
||
Format: PDF | Size: 152.8 KB | Download |
Cite the Following Article
Air–water interface of submerged superhydrophobic surfaces imaged by atomic force microscopy
Markus Moosmann, Thomas Schimmel, Wilhelm Barthlott and Matthias Mail
Beilstein J. Nanotechnol. 2017, 8, 1671–1679.
https://doi.org/10.3762/bjnano.8.167
How to Cite
Moosmann, M.; Schimmel, T.; Barthlott, W.; Mail, M. Beilstein J. Nanotechnol. 2017, 8, 1671–1679. doi:10.3762/bjnano.8.167
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.4 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Speichermann‐Jägel, L.; Dullenkopf‐Beck, S.; Droll, R.; Gandyra, D.; Barczewski, M.; Walheim, S.; Schimmel, T. Stable Air Retention under Water on Artificial Salvinia Surfaces Enabled by the Air Spring Effect: The Importance of Geometrical and Surface‐Energy Barriers, and of the Air Spring Height. Advanced Materials Interfaces 2024. doi:10.1002/admi.202400400
- Huang, T.-C.; Wu, W.-H.; Wu, M.-T.; Chuang, C.; Pai, C.-F.; Hsieh, Y.-P.; Hofmann, M. Realizing High-Quality Interfaces in Two-Dimensional Material Spin Valves. ACS Materials Letters 2023, 6, 94–99. doi:10.1021/acsmaterialslett.3c01194
- Vieira, A.; Zhou, Q. Multimodal Sensing Transparent Droplet Probe for Characterization of Superhydrophobic Surfaces. IEEE Sensors Journal 2023, 23, 17462–17469. doi:10.1109/jsen.2023.3288333
- Łojkowski, M.; Walejewska, E.; Sosnowska, M.; Opalińska, A.; Grubczak, K.; Jaworski, S.; Moniuszko, M.; Swieszkowski, W. Design of polymeric thin films with nanovolcanoes for trapping hydroxyapatite nanoparticles to promote or inhibit cell proliferation. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-2868379/v3
- Łojkowski, M.; Walejewska, E.; Sosnowska, M.; Opalińska, A.; Grubczak, K.; Jaworski, S.; Moniuszko, M.; Swieszkowski, W. Design of polymeric thin films with nanovolcanoes for trapping hydroxyapatite nanoparticles to promote or inhibit cell proliferation. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-2868379/v1
- Łojkowski, M.; Walejewska, E.; Sosnowska, M.; Opalińska, A.; Grubczak, K.; Jaworski, S.; Moniuszko, M.; Swieszkowski, W. Design of polymeric thin films with nanovolcanoes for trapping hydroxyapatite nanoparticles to promote or inhibit cell proliferation. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-2868379/v2
- Kim, M.; Yoo, S.; Jeong, H. E.; Kwak, M. K. Fabrication of Salvinia-inspired surfaces for hydrodynamic drag reduction by capillary-force-induced clustering. Nature communications 2022, 13, 5181. doi:10.1038/s41467-022-32919-4
- Bing, W.; Wang, H.; Tian, L.; Zhao, J.; Jin, H.; Du, W.; Ren, L. Small Structure, Large Effect: Functional Surfaces Inspired by Salvinia Leaves. Small Structures 2021, 2, 2100079. doi:10.1002/sstr.202100079
- Mehanna, Y. A.; Sadler, E.; Upton, R. L.; Kempchinsky, A. G.; Lu, Y.; Crick, C. R. The challenges, achievements and applications of submersible superhydrophobic materials. Chemical Society reviews 2021, 50, 6569–6612. doi:10.1039/d0cs01056a
- Yu, N.; Kiani, S.; Xu, M.; Kim, C.-J. “Cj”. Brightness of Microtrench Superhydrophobic Surfaces and Visual Detection of Intermediate Wetting States. Langmuir : the ACS journal of surfaces and colloids 2021, 37, 1206–1214. doi:10.1021/acs.langmuir.0c03172
- Gandyra, D.; Walheim, S.; Gorb, S. N.; Ditsche, P.; Barthlott, W.; Schimmel, T. Air Retention under Water by the Floating Fern Salvinia: The Crucial Role of a Trapped Air Layer as a Pneumatic Spring. Small (Weinheim an der Bergstrasse, Germany) 2020, 16, 2003425. doi:10.1002/smll.202003425
- Kung, C. H.; Sow, P. K.; Zahiri, B.; Mérida, W. Assessment and Interpretation of Surface Wettability Based on Sessile Droplet Contact Angle Measurement: Challenges and Opportunities. Advanced Materials Interfaces 2019, 6, 1900839. doi:10.1002/admi.201900839
- Łojkowski, M.; Walheim, S.; Jokubauskas, P.; Schimmel, T.; Święszkowski, W. Tuning the Wettability of a Thin Polymer Film by Gradually Changing the Geometry of Nanoscale Pore Edges. Langmuir : the ACS journal of surfaces and colloids 2019, 35, 5987–5996. doi:10.1021/acs.langmuir.9b00467
- Elbourne, A.; Dupont, M. F.; Collett, S.; Truong, V. K.; Xu, X.; Vrancken, N.; Baulin, V. A.; Ivanova, E. P.; Crawford, R. J. Imaging the air-water interface: Characterising biomimetic and natural hydrophobic surfaces using in situ atomic force microscopy. Journal of colloid and interface science 2018, 536, 363–371. doi:10.1016/j.jcis.2018.10.059
- Jetly, A.; Vakarelski, I. U.; Thoroddsen, S. T. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water. Soft matter 2018, 14, 1608–1613. doi:10.1039/c7sm01904a