Cite the Following Article
Transport characteristics of a silicene nanoribbon on Ag(110)
Ryoichi Hiraoka, Chun-Liang Lin, Kotaro Nakamura, Ryo Nagao, Maki Kawai, Ryuichi Arafune and Noriaki Takagi
Beilstein J. Nanotechnol. 2017, 8, 1699–1704.
https://doi.org/10.3762/bjnano.8.170
How to Cite
Hiraoka, R.; Lin, C.-L.; Nakamura, K.; Nagao, R.; Kawai, M.; Arafune, R.; Takagi, N. Beilstein J. Nanotechnol. 2017, 8, 1699–1704. doi:10.3762/bjnano.8.170
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.1 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Dávila, M. E.; Le Lay, G. Silicene: Genesis, remarkable discoveries, and legacy. Materials Today Advances 2022, 16, 100312. doi:10.1016/j.mtadv.2022.100312
- Lin, M.-K.; Chen, G.-H.; Ho, C.-L.; Chueh, W.-C.; Hlevyack, J. A.; Kuo, C.-N.; Fu, T.-Y.; Lin, J.-J.; Lue, C. S.; Chang, W.-H.; Takagi, N.; Arafune, R.; Chiang, T.-C.; Lin, C.-L. Tip-Mediated Bandgap Tuning for Monolayer Transition Metal Dichalcogenides. ACS nano 2022, 16, 14918–14924. doi:10.1021/acsnano.2c05841
- Yue, S.; Zhou, H.; Feng, Y.; Wang, Y.; Sun, Z.; Geng, D.; Arita, M.; Kumar, S.; Shimada, K.; Cheng, P.; Chen, L.; Yao, Y.; Meng, S.; Wu, K.; Feng, B. Observation of One-Dimensional Dirac Fermions in Silicon Nanoribbons. Nano letters 2022, 22, 695–701. doi:10.1021/acs.nanolett.1c03862
- Salomon, E.; Angot, T.; Lew Yan Voon, L.; Le Lay, G. Silicene. Xenes; Elsevier, 2022; pp 1–25. doi:10.1016/b978-0-12-823824-0.00008-3
- Pizzochero, M.; Tepliakov, N. V.; Mostofi, A. A.; Kaxiras, E. Electrically Induced Dirac Fermions in Graphene Nanoribbons. Nano letters 2021, 21, 9332–9338. doi:10.1021/acs.nanolett.1c03596
- Yuhara, J.; Shimazu, H.; Kobayashi, M.; Ohta, A.; Miyazaki, S.; Takakura, S.-i.; Nakatake, M.; Le Lay, G. Epitaxial growth of massively parallel germanium nanoribbons by segregation through Ag(1 1 0) thin films on Ge(1 1 0). Applied Surface Science 2021, 550, 149236. doi:10.1016/j.apsusc.2021.149236
- Dávila, M. E.; Le Lay, G.; Cerdá, J. Reducing the dimensionality of novel materials: one-dimensional silicon nanoribbons. 2D Semiconductor Materials and Devices; Elsevier, 2020; pp 221–249. doi:10.1016/b978-0-12-816187-6.00008-x
- Roese, P.; Shamout, K.; Espeter, P.; Hönig, R.; Berges, U.; Westphal, C. Structure determination of substrate influenced silicon nano-ribbon growth. Applied Surface Science 2019, 467, 580–587. doi:10.1016/j.apsusc.2018.10.195
- Rzeszotarski, B.; Szafran, B. Electron spin inversion in gated silicene nanoribbons. Physical Review B 2018, 98, 075417. doi:10.1103/physrevb.98.075417
- Geng, D.; Yang, H. Y. Recent Advances in Growth of Novel 2D Materials: Beyond Graphene and Transition Metal Dichalcogenides. Advanced materials (Deerfield Beach, Fla.) 2018, 30, 1800865. doi:10.1002/adma.201800865