Synthesis and functionalization of NaGdF4:Yb,Er@NaGdF4 core–shell nanoparticles for possible application as multimodal contrast agents

Dovile Baziulyte-Paulaviciene, Vitalijus Karabanovas, Marius Stasys, Greta Jarockyte, Vilius Poderys, Simas Sakirzanovas and Ricardas Rotomskis
Beilstein J. Nanotechnol. 2017, 8, 1815–1824. https://doi.org/10.3762/bjnano.8.183

Supporting Information

Supporting Information File 1: The hydrodynamic particle size and zeta potential.
The results representing hydrodynamic size distribution of UCNPs and their zeta potential that were measured using dynamic light scattering method (DLS).
Format: PDF Size: 136.1 KB Download

Cite the Following Article

Synthesis and functionalization of NaGdF4:Yb,Er@NaGdF4 core–shell nanoparticles for possible application as multimodal contrast agents
Dovile Baziulyte-Paulaviciene, Vitalijus Karabanovas, Marius Stasys, Greta Jarockyte, Vilius Poderys, Simas Sakirzanovas and Ricardas Rotomskis
Beilstein J. Nanotechnol. 2017, 8, 1815–1824. https://doi.org/10.3762/bjnano.8.183

How to Cite

Baziulyte-Paulaviciene, D.; Karabanovas, V.; Stasys, M.; Jarockyte, G.; Poderys, V.; Sakirzanovas, S.; Rotomskis, R. Beilstein J. Nanotechnol. 2017, 8, 1815–1824. doi:10.3762/bjnano.8.183

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.2 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Morkvenas, A.; Ezerskyte, E.; Klimkevicius, V.; Jurgelene, Z.; Venius, J.; Burkanas, M.; Katelnikovas, A.; Karabanovas, V. Study of shape-tunable bimodal GdPO4:Eu3+ nanoparticles and their impact on Daphnia magna. Environmental Science: Nano 2024, 11, 4577–4587. doi:10.1039/d4en00574k
  • Ezerskyte, E.; Morkvenas, A.; Venius, J.; Sakirzanovas, S.; Karabanovas, V.; Katelnikovas, A.; Klimkevicius, V. Biocompatible Upconverting Nanoprobes for Dual-Modal Imaging and Temperature Sensing. ACS applied nano materials 2024, 7, 6185–6195. doi:10.1021/acsanm.3c06111
  • Munirathnappa, A. K.; Aranthady, C.; Kulal, A.; Kumar Maurya, S.; Kumar, K.; Nayak, S.; Cheol Lee, S.; Sundaram, N. G. Synthesis, Neutron Diffraction, and DFT Studies of NaLa(WO4)2: Yb3+/Er3+; NIR Induced Green Fluorescent Bifunctional Probes for In Vitro Cell Imaging and Solid State Lighting. ChemistrySelect 2022, 7. doi:10.1002/slct.202104581
  • Gomes, D. S.; da Costa, A.; Pereira, A. M.; Casal, M.; Machado, R. Biocomposites of Silk-Elastin and Essential Oil from Mentha piperita Display Antibacterial Activity. ACS omega 2022, 7, 6568–6578. doi:10.1021/acsomega.1c05704
  • Mnasri, W.; Parvizian, M.; Ammar-Merah, S. Design and Synthesis of Luminescent Lanthanide-Based Bimodal Nanoprobes for Dual Magnetic Resonance (MR) and Optical Imaging. Nanomaterials (Basel, Switzerland) 2021, 11, 354. doi:10.3390/nano11020354
  • Vu, D. T.; Vu-Le, T. T.; Nguyen, V. N.; Le, Q. M.; Wang, C. R. C.; Chau, L.-K.; Yang, T.-S.; Chan, M. W. Y.; Lee, C.-I.; Ting, C.-C.; Lin, J.-Y.; Kan, H.-C.; Hsu, C. C. Gold nanorods conjugated upconversion nanoparticles nanocomposites for simultaneous bioimaging, local temperature sensing and photothermal therapy of OML-1 oral cancer cells. International Journal of Smart and Nano Materials 2020, 12, 49–71. doi:10.1080/19475411.2020.1839595
  • Maurya, S. K.; Mohan, M.; Poddar, R.; Senapati, D.; Singh, S.; Roy, A.; Munirathnappa, A. K.; da Silva, J. C. E.; Kumar, K. Synthesis of NaGdF4:Er3+/Yb3+ Upconversion Particles as Exogenous Contrast Agent for Swept-Source Optical Coherence Tomography: In Vitro Animal Tissue Imaging. The Journal of Physical Chemistry C 2020, 124, 18366–18378. doi:10.1021/acs.jpcc.0c05786
  • Липенгольц, А. А.; Арнопольская, А. М.; Шейно, И. Н.; Кулаков, В. Н. Экспериментальное подтверждение противоопухолевой эффективности нейтрон-захватной терапии с гадолинием. Journal of oncology: diagnostic radiology and radiotherapy 2020, 3, 63–70. doi:10.37174/2587-7593-2020-3-2-63-70
  • Du, Z.; Gupta, A.; Clarke, C.; Cappadona, M.; Clases, D.; Liu, D.; Yang, Z.; Karan, S.; Price, W. S.; Xu, X. Porous Upconversion Nanostructures as Bimodal Biomedical Imaging Contrast Agents. The Journal of Physical Chemistry C 2020, 124, 12168–12174. doi:10.1021/acs.jpcc.0c03945
  • Mnasri, W.; Tahar, L. B.; Beaunier, P.; Haidar, D. A.; Boissière, M.; Sandre, O.; Ammar, S. Polyol-Made Luminescent and Superparamagnetic β-NaY0.8Eu0.2F4@γ-Fe2O3 Core-Satellites Nanoparticles for Dual Magnetic Resonance and Optical Imaging. Nanomaterials (Basel, Switzerland) 2020, 10, 393. doi:10.3390/nano10020393
  • Bartha, C.; Secu, C.; Secu, M. Multifunctional magnetic, optical and electrical nanomaterials processed by sol–gel method. Sol-Gel Derived Optical and Photonic Materials; Elsevier, 2020; pp 347–368. doi:10.1016/b978-0-12-818019-8.00015-6
  • Sales, T. O.; Ximendes, E.; Jaque, D.; Jacinto, C. Facile and fast synthesis of lanthanide nanoparticles for bio-applications. Nanocomposites for Photonic and Electronic Applications; Elsevier, 2020; pp 195–228. doi:10.1016/b978-0-12-818396-0.00008-x
  • Du, Z.; Gupta, A.; Clarke, C.; Cappadona, M.; Clases, D.; Liu, D.; Yang, Z.; Doble, P.; Price, W. S.; Xu, X. Porous upconversion nanostructures as bimodal biomedical imaging contrast agents. Cold Spring Harbor Laboratory 2019, 837864. doi:10.1101/837864
  • Munirathnappa, A. K.; Maurya, S. K.; Kumar, K.; Navada, K. K.; Kulal, A.; Sundaram, N. G. Scheelite like NaTb(WO4)2 nanoparticles: Green fluorescence and in vitro cell imaging applications. Materials science & engineering. C, Materials for biological applications 2019, 106, 110182. doi:10.1016/j.msec.2019.110182
  • Li, H.; Li, J.; Jia, Y.; Liao, F.; Xu, Y.; Sun, L.-D.; Yan, C.-H.; Li, Y.; Bie, L.-j.; Ju, J. Crystallization of Gd2O3 nanoparticles: evolution of the microstructure via electron-beam manipulation. Nanoscale 2019, 11, 14952–14958. doi:10.1039/c9nr04097h
  • Himmelstoß, S. F.; Hirsch, T. A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging. Methods and applications in fluorescence 2019, 7, 022002. doi:10.1088/2050-6120/ab0bfa
  • Kristinaityte, K.; Zalewski, T.; Kempka, M.; Sakirzanovas, S.; Baziulyte-Paulaviciene, D.; Jurga, S.; Rotomskis, R.; Valeviciene, N. Spin–Lattice Relaxation and Diffusion Processes in Aqueous Solutions of Gadolinium-Based Upconverting Nanoparticles at Different Magnetic Fields. Applied Magnetic Resonance 2018, 50, 553–561. doi:10.1007/s00723-018-1105-z
  • Reddy, K. L.; Balaji, R.; Kumar, A.; Krishnan, V. Lanthanide Doped Near Infrared Active Upconversion Nanophosphors: Fundamental Concepts, Synthesis Strategies, and Technological Applications. Small (Weinheim an der Bergstrasse, Germany) 2018, 14, 1801304. doi:10.1002/smll.201801304
  • Varapnickas, S.; Baziulytė-Paulavičienė, D.; Sakirzanovas, S.; Malinauskas, M. Upconverting nanocrystals as luminescent temperature probes for local-heating imaging during direct laser writing 3D nanolithography. In Nanophotonics Australasia 2017, SPIE, 2018; pp 139–148. doi:10.1117/12.2283224
Other Beilstein-Institut Open Science Activities