Evaluating the toxicity of TiO2-based nanoparticles to Chinese hamster ovary cells and Escherichia coli: a complementary experimental and computational approach

Alicja Mikolajczyk, Natalia Sizochenko, Ewa Mulkiewicz, Anna Malankowska, Michal Nischk, Przemyslaw Jurczak, Seishiro Hirano, Grzegorz Nowaczyk, Adriana Zaleska-Medynska, Jerzy Leszczynski, Agnieszka Gajewicz and Tomasz Puzyn
Beilstein J. Nanotechnol. 2017, 8, 2171–2180. https://doi.org/10.3762/bjnano.8.216

Cite the Following Article

Evaluating the toxicity of TiO2-based nanoparticles to Chinese hamster ovary cells and Escherichia coli: a complementary experimental and computational approach
Alicja Mikolajczyk, Natalia Sizochenko, Ewa Mulkiewicz, Anna Malankowska, Michal Nischk, Przemyslaw Jurczak, Seishiro Hirano, Grzegorz Nowaczyk, Adriana Zaleska-Medynska, Jerzy Leszczynski, Agnieszka Gajewicz and Tomasz Puzyn
Beilstein J. Nanotechnol. 2017, 8, 2171–2180. https://doi.org/10.3762/bjnano.8.216

How to Cite

Mikolajczyk, A.; Sizochenko, N.; Mulkiewicz, E.; Malankowska, A.; Nischk, M.; Jurczak, P.; Hirano, S.; Nowaczyk, G.; Zaleska-Medynska, A.; Leszczynski, J.; Gajewicz, A.; Puzyn, T. Beilstein J. Nanotechnol. 2017, 8, 2171–2180. doi:10.3762/bjnano.8.216

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 774.6 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Moncho, S.; Serrano-Candelas, E.; de Julián-Ortiz, J. V.; Gozalbes, R. A review on the structural characterization of nanomaterials for nano-QSAR models. Beilstein journal of nanotechnology 2024, 15, 854–866. doi:10.3762/bjnano.15.71
  • Gakis, G. P.; Aviziotis, I. G.; Charitidis, C. A. A structure-activity approach towards the toxicity assessment of multicomponent metal oxide nanomaterials. Nanoscale 2023, 15, 16432–16446. doi:10.1039/d3nr03174h
  • Slimani, Y.; Almessiere, M. A.; Mohamed, M. J. S.; Hannachi, E.; Caliskan, S.; Akhtar, S.; Baykal, A.; Gondal, M. A. Synthesis of Ce and Sm Co-Doped TiO2 Nanoparticles with Enhanced Photocatalytic Activity for Rhodamine B Dye Degradation. Catalysts 2023, 13, 668. doi:10.3390/catal13040668
  • Shirokii, N.; Din, Y.; Petrov, I.; Seregin, Y.; Sirotenko, S.; Razlivina, J.; Serov, N.; Vinogradov, V. Quantitative Prediction of Inorganic Nanomaterial Cellular Toxicity via Machine Learning. Small (Weinheim an der Bergstrasse, Germany) 2023, 19, e2207106. doi:10.1002/smll.202207106
  • Stoliński, F.; Rybińska-Fryca, A.; Gromelski, M.; Mikolajczyk, A.; Puzyn, T. NanoMixHamster: a web-based tool for predicting cytotoxicity of TiO2-based multicomponent nanomaterials toward Chinese hamster ovary (CHO-K1) cells. Nanotoxicology 2022, 16, 276–289. doi:10.1080/17435390.2022.2080609
  • Ji, Z.; Guo, W.; Wood, E. L.; Liu, J.; Sakkiah, S.; Xu, X.; Patterson, T. A.; Hong, H. Machine Learning Models for Predicting Cytotoxicity of Nanomaterials. Chemical research in toxicology 2022, 35, 125–139. doi:10.1021/acs.chemrestox.1c00310
  • Jeevanandam, J.; Chan, Y. S. In vitro and in vivo toxicity of metal nanoparticles and their drug delivery applications. Applications of Nanotechnology in Drug Discovery and Delivery; Elsevier, 2022; pp 367–421. doi:10.1016/b978-0-12-824408-1.00004-1
  • Madi, M.; Tahir, M.; Tasleem, S. Advances in structural modification of perovskite semiconductors for visible light assisted photocatalytic CO2 reduction to renewable solar fuels: A review. Journal of Environmental Chemical Engineering 2021, 9, 106264. doi:10.1016/j.jece.2021.106264
  • Toropova, A. P.; Toropov, A. A.; Leszczynski, J.; Sizochenko, N. Using quasi-SMILES for the predictive modeling of the safety of 574 metal oxide nanoparticles measured in different experimental conditions. Environmental toxicology and pharmacology 2021, 86, 103665. doi:10.1016/j.etap.2021.103665
  • Sizochenko, N.; Mikolajczyk, A.; Syzochenko, M.; Puzyn, T.; Leszczynski, J. Zeta potentials (ζ) of metal oxide nanoparticles: A meta-analysis of experimental data and a predictive neural networks modeling. NanoImpact 2021, 22, 100317. doi:10.1016/j.impact.2021.100317
  • Kar, S.; Leszczynski, J. QSAR and machine learning modeling of toxicity of nanomaterials: a risk assessment approach. Health and Environmental Safety of Nanomaterials; Elsevier, 2021; pp 417–441. doi:10.1016/b978-0-12-820505-1.00016-x
  • Kuz'min, V. E.; Ognichenko, L. N.; Sizochenko, N.; Chapkin, V. A.; Stelmakh, S. I.; Shyrykalova, A. O.; Leszczynski, J. Combining Features of Metal Oxide Nanoparticles. Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials; IGI Global, 2021; pp 317–329. doi:10.4018/978-1-7998-8591-7.ch014
  • Malankowska, A.; Mikolajczyk, A.; Mędrzycka, J.; Wysocka, I.; Nowaczyk, G.; Jarek, M.; Puzyn, T.; Mulkiewicz, E. The effect of Ag, Au, Pt, and Pd on the surface properties, photocatalytic activity and toxicity of multicomponent TiO2-based nanomaterials. Environmental Science: Nano 2020, 7, 3557–3574. doi:10.1039/d0en00580k
  • Singh, A.; Ansari, M. H. D.; Rosenkranz, D.; Maharjan, R. S.; Kriegel, F. L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artificial Intelligence and Machine Learning in Computational Nanotoxicology: Unlocking and Empowering Nanomedicine. Advanced healthcare materials 2020, 9, 1901862. doi:10.1002/adhm.201901862
  • Hunt, N. J. Handbook of surface-functionalized nanomaterials: safety and legal aspects. Handbook of Functionalized Nanomaterials for Industrial Applications; Elsevier, 2020; pp 945–982. doi:10.1016/b978-0-12-816787-8.00029-6
  • Buglak, A. A.; Zherdev, A. V.; Dzantiev, B. B. Nano-(Q)SAR for Cytotoxicity Prediction of Engineered Nanomaterials. Molecules (Basel, Switzerland) 2019, 24, 4537. doi:10.3390/molecules24244537
  • Sizochenko, N.; Syzochenko, M.; Fjodorova, N.; Rasulev, B.; Leszczynski, J. Evaluating genotoxicity of metal oxide nanoparticles: Application of advanced supervised and unsupervised machine learning techniques. Ecotoxicology and environmental safety 2019, 185, 109733. doi:10.1016/j.ecoenv.2019.109733
  • Tandon, H.; Chakraborty, T.; Suhag, V. A model of atomic compressibility and its application in QSAR domain for toxicological property prediction. Journal of molecular modeling 2019, 25, 1–14. doi:10.1007/s00894-019-4199-9
  • Forest, V.; Hochepied, J.-F.; Pourchez, J. Importance of Choosing Relevant Biological End Points To Predict Nanoparticle Toxicity with Computational Approaches for Human Health Risk Assessment. Chemical research in toxicology 2019, 32, 1320–1326. doi:10.1021/acs.chemrestox.9b00022
  • Mikolajczyk, A.; Sizochenko, N.; Mulkiewicz, E.; Malankowska, A.; Rasulev, B.; Puzyn, T. A chemoinformatics approach for the characterization of hybrid nanomaterials: safer and efficient design perspective. Nanoscale 2019, 11, 11808–11818. doi:10.1039/c9nr01162e
Other Beilstein-Institut Open Science Activities