Cite the Following Article
Dissociative electron attachment to coordination complexes of chromium: chromium(0) hexacarbonyl and benzene-chromium(0) tricarbonyl
Janina Kopyra, Paulina Maciejewska and Jelena Maljković
Beilstein J. Nanotechnol. 2017, 8, 2257–2263.
https://doi.org/10.3762/bjnano.8.225
How to Cite
Kopyra, J.; Maciejewska, P.; Maljković, J. Beilstein J. Nanotechnol. 2017, 8, 2257–2263. doi:10.3762/bjnano.8.225
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 165.3 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Miller, T. M.; Rodriguez, V. G.; Ard, S. G.; Viggiano, A. A.; Shuman, N. S. Dissociative electron attachment and Ar+ reaction with chromium hexacarbonyl, 296-400 K. The Journal of chemical physics 2024, 161. doi:10.1063/5.0232322
- Tomar, V.; Kumar, P.; Nemiwal, M.; Joshi, R. K. Review on catalytic significance of 3d-transition metal-carbonyl complexes for general and selective organic reactions. Inorganic Chemistry Communications 2023, 158, 111488. doi:10.1016/j.inoche.2023.111488
- Miller, T. M.; Lewis, T. W. R.; Ard, S. G.; Viggiano, A. A.; Shuman, N. S. Electron and Ar+ interaction with Mo(CO)6 at thermal energies; energetic limit on removal of 5 ligands from Mo(CO)6. The Journal of chemical physics 2023, 159. doi:10.1063/5.0156596
- Pintea, M.; Mason, N.; Tudorovskaya, M. Dissociative Electron Attachment Cross Sections for Ni(CO)4, Co(CO)3NO, Cr(CO)6. Chemistry 2022, 4, 1060–1075. doi:10.3390/chemistry4030072
- Shih, P.-Y.; Cipriani, M.; Hermanns, C. F.; Oster, J.; Edinger, K.; Gölzhäuser, A.; Ingólfsson, O. Low-energy electron interaction and focused electron beam-induced deposition of molybdenum hexacarbonyl (Mo(CO)6). Beilstein journal of nanotechnology 2022, 13, 182–191. doi:10.3762/bjnano.13.13
- Barth, S.; Huth, M.; Jungwirth, F. Precursors for direct-write nanofabrication with electrons. Journal of Materials Chemistry C 2020, 8, 15884–15919. doi:10.1039/d0tc03689g
- da Silva, F. F.; Thorman, R. M.; Bjornsson, R.; Lu, H.; McElwee-White, L.; Ingólfsson, O. Dissociation of the FEBID precursor cis-Pt(CO)2Cl2 driven by low-energy electrons. Physical chemistry chemical physics : PCCP 2020, 22, 6100–6108. doi:10.1039/c9cp06633k
- Cipriani, M.; Thorman, R. M.; Brewer, C. R.; McElwee-White, L.; Ingólfsson, O. Dissociative ionization of the potential focused electron beam induced deposition precursor π-allyl ruthenium(II) tricarbonyl bromide, a combined theoretical and experimental study. The European Physical Journal D 2019, 73, 227. doi:10.1140/epjd/e2019-100151-9
- Swiderek, P.; Marbach, H.; Hagen, C. W. Chemistry for electron-induced nanofabrication. Beilstein journal of nanotechnology 2018, 9, 1317–1320. doi:10.3762/bjnano.9.124