Comparing postdeposition reactions of electrons and radicals with Pt nanostructures created by focused electron beam induced deposition

Julie A. Spencer, Michael Barclay, Miranda J. Gallagher, Robert Winkler, Ilyas Unlu, Yung-Chien Wu, Harald Plank, Lisa McElwee-White and D. Howard Fairbrother
Beilstein J. Nanotechnol. 2017, 8, 2410–2424. https://doi.org/10.3762/bjnano.8.240

Supporting Information

Supporting Information File 1: Additional experimental information.
Percent platinum content as a function of electron beam irradiation for a PtCl2 deposit and Auger spectra detailing the effects of electron beam irradiation on a relatively thin PtCl2 deposit; reference EDS data for the substrate, Pt foil, and a typical PtCl2 deposit before and after atomic hydrogen purification; SEM and EDS data for a PtCl2 deposit exposed to 10 min of atomic hydrogen treatment; AFM analysis of the edge of a PtCl2 deposit after loss of structural integrity; SEM and EDS data for FEBID deposits created from MeCpPtMe3 and Pt(hfac)2, before and after atomic hydrogen treatment; SEM and WDS data for a FEBID deposit created from Pt(PF3)4, before and after atomic hydrogen treatment.
Format: PDF Size: 694.7 KB Download

Cite the Following Article

Comparing postdeposition reactions of electrons and radicals with Pt nanostructures created by focused electron beam induced deposition
Julie A. Spencer, Michael Barclay, Miranda J. Gallagher, Robert Winkler, Ilyas Unlu, Yung-Chien Wu, Harald Plank, Lisa McElwee-White and D. Howard Fairbrother
Beilstein J. Nanotechnol. 2017, 8, 2410–2424. https://doi.org/10.3762/bjnano.8.240

How to Cite

Spencer, J. A.; Barclay, M.; Gallagher, M. J.; Winkler, R.; Unlu, I.; Wu, Y.-C.; Plank, H.; McElwee-White, L.; Fairbrother, D. H. Beilstein J. Nanotechnol. 2017, 8, 2410–2424. doi:10.3762/bjnano.8.240

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 711.5 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Boeckers, H.; Rohdenburg, M.; Swiderek, P. Surface science studies on electron-induced reactions of NH3 and their perspectives for enhancing nanofabrication processes. Surface Science 2024, 751, 122628. doi:10.1016/j.susc.2024.122628
  • Glessi, C.; Polman, F. A.; Hagen, C. W. Water-assisted purification during electron beam-induced deposition of platinum and gold. Beilstein journal of nanotechnology 2024, 15, 884–896. doi:10.3762/bjnano.15.73
  • Bilgilisoy, E.; Kamali, A.; Gentner, T. X.; Ballmann, G.; Harder, S.; Steinrück, H.-P.; Marbach, H.; Ingólfsson, O. A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2. Beilstein journal of nanotechnology 2023, 14, 1178–1199. doi:10.3762/bjnano.14.98
  • Seewald, L. M.; Sattelkow, J.; Brugger-Hatzl, M.; Kothleitner, G.; Frerichs, H.; Schwalb, C.; Hummel, S.; Plank, H. 3D Nanoprinting of All-Metal Nanoprobes for Electric AFM Modes. Nanomaterials (Basel, Switzerland) 2022, 12, 4477. doi:10.3390/nano12244477
  • Utke, I.; Swiderek, P.; Höflich, K.; Madajska, K.; Jurczyk, J.; Martinović, P.; Szymańska, I. Coordination and organometallic precursors of group 10 and 11: Focused electron beam induced deposition of metals and insight gained from chemical vapour deposition, atomic layer deposition, and fundamental surface and gas phase studies. Coordination Chemistry Reviews 2022, 458, 213851. doi:10.1016/j.ccr.2021.213851
  • Yu, J.-C.; Abdel-Rahman, M. K.; Fairbrother, D. H.; McElwee-White, L. Charged Particle-Induced Surface Reactions of Organometallic Complexes as a Guide to Precursor Design for Electron- and Ion-Induced Deposition of Nanostructures. ACS applied materials & interfaces 2021, 13, 48333–48348. doi:10.1021/acsami.1c12327
  • Mohammadi, X.; Matinfar, G.; Khaneghah, A. M.; Singh, A. P.; Pratap-Singh, A. Emergence of cold plasma and electron beam irradiation as novel technologies to counter mycotoxins in food products. World Mycotoxin Journal 2021, 14, 75–83. doi:10.3920/wmj2020.2586
  • Mahgoub, A.; Lu, H.; Thorman, R. M.; Preradovic, K.; Jurca, T.; McElwee-White, L.; Fairbrother, H.; Hagen, C. W. Electron beam-induced deposition of platinum from Pt(CO)2Cl2 and Pt(CO)2Br2. Beilstein journal of nanotechnology 2020, 11, 1789–1800. doi:10.3762/bjnano.11.161
  • Barth, S.; Huth, M.; Jungwirth, F. Precursors for direct-write nanofabrication with electrons. Journal of Materials Chemistry C 2020, 8, 15884–15919. doi:10.1039/d0tc03689g
  • Howell, R. W. Advancements in the use of Auger electrons in science and medicine during the period 2015-2019. International journal of radiation biology 2020, 99, 1–26. doi:10.1080/09553002.2020.1831706
  • Thorman, R. M.; Jensen, P. A.; Yu, J.-C.; Matsuda, S. J.; McElwee-White, L.; Ingólfsson, O.; Fairbrother, D. H. Electron-Induced Reactions of Ru(CO)4I2: Gas Phase, Surface, and Electron Beam-Induced Deposition. The Journal of Physical Chemistry C 2020, 124, 10593–10604. doi:10.1021/acs.jpcc.0c01801
  • Thorman, R. M.; Matsuda, S. J.; McElwee-White, L.; Fairbrother, D. H. Identifying and Rationalizing the Differing Surface Reactions of Low-Energy Electrons and Ions with an Organometallic Precursor. The journal of physical chemistry letters 2020, 11, 2006–2013. doi:10.1021/acs.jpclett.0c00061
  • da Silva, F. F.; Thorman, R. M.; Bjornsson, R.; Lu, H.; McElwee-White, L.; Ingólfsson, O. Dissociation of the FEBID precursor cis-Pt(CO)2Cl2 driven by low-energy electrons. Physical chemistry chemical physics : PCCP 2020, 22, 6100–6108. doi:10.1039/c9cp06633k
  • Plank, H.; Winkler, R.; Schwalb, C. H.; Hütner, J.; Fowlkes, J. D.; Rack, P. D.; Utke, I.; Huth, M. Focused Electron Beam-Based 3D Nanoprinting for Scanning Probe Microscopy: A Review. Micromachines 2019, 11, 48. doi:10.3390/mi11010048
  • Rohdenburg, M.; Martinović, P.; Ahlenhoff, K.; Koch, S.; Emmrich, D.; Gölzhäuser, A.; Swiderek, P. Cisplatin as a Potential Platinum Focused Electron Beam Induced Deposition Precursor: NH3 Ligands Enhance the Electron-Induced Removal of Chlorine. The Journal of Physical Chemistry C 2019, 123, 21774–21787. doi:10.1021/acs.jpcc.9b05756
  • Jurczyk, J.; Brewer, C. R.; Hawkins, O. M.; Polyakov, M. N.; Kapusta, C.; McElwee-White, L.; Utke, I. Focused Electron Beam-Induced Deposition and Post-Growth Purification Using the Heteroleptic Ru Complex (η3-C3H5)Ru(CO)3Br. ACS applied materials & interfaces 2019, 11, 28164–28171. doi:10.1021/acsami.9b07634
  • Shaban, M.; Ali, M.; Abdel-Hady, K.; Khan, A. A. P.; Hamdy, H. Hexagonal arrays of Pt nanocylinders on the top surface of PAA membranes using low vacuum sputter coating technique. Vacuum 2019, 161, 259–267. doi:10.1016/j.vacuum.2018.12.039
  • Swiderek, P.; Marbach, H.; Hagen, C. W. Chemistry for electron-induced nanofabrication. Beilstein journal of nanotechnology 2018, 9, 1317–1320. doi:10.3762/bjnano.9.124
  • Carden, W. G.; Lu, H.; Spencer, J. A.; Fairbrother, D. H.; McElwee-White, L. Mechanism-based design of precursors for focused electron beam-induced deposition. MRS Communications 2018, 8, 343–357. doi:10.1557/mrc.2018.77
Other Beilstein-Institut Open Science Activities