Synthesis of metal-fluoride nanoparticles supported on thermally reduced graphite oxide

Alexa Schmitz, Kai Schütte, Vesko Ilievski, Juri Barthel, Laura Burk, Rolf Mülhaupt, Junpei Yue, Bernd Smarsly and Christoph Janiak
Beilstein J. Nanotechnol. 2017, 8, 2474–2483. https://doi.org/10.3762/bjnano.8.247

Supporting Information

Information about the synthesis of TRGO and TRGO-SH, the analysis of TRGO-300, -400, -750 and -SH, and an overview of all samples.

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 3.9 MB Download

Cite the Following Article

Synthesis of metal-fluoride nanoparticles supported on thermally reduced graphite oxide
Alexa Schmitz, Kai Schütte, Vesko Ilievski, Juri Barthel, Laura Burk, Rolf Mülhaupt, Junpei Yue, Bernd Smarsly and Christoph Janiak
Beilstein J. Nanotechnol. 2017, 8, 2474–2483. https://doi.org/10.3762/bjnano.8.247

How to Cite

Schmitz, A.; Schütte, K.; Ilievski, V.; Barthel, J.; Burk, L.; Mülhaupt, R.; Yue, J.; Smarsly, B.; Janiak, C. Beilstein J. Nanotechnol. 2017, 8, 2474–2483. doi:10.3762/bjnano.8.247

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 420.0 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Wygant, B. R.; Schorr, N. B.; Kolesnichenko, I. V.; Lambert, T. N. Nanoparticulate FeF2@C as a Li Battery Conversion Cathode. ACS Applied Energy Materials 2022, 5, 13346–13355. doi:10.1021/acsaem.2c01988
  • Akiyoshi, K.; Watanabe, Y.; Kameyama, T.; Kawawaki, T.; Negishi, Y.; Kuwabata, S.; Torimoto, T. Composition control of alloy nanoparticles consisting of bulk-immiscible Au and Rh metals via an ionic liquid/metal sputtering technique for improving their electrocatalytic activity. Physical chemistry chemical physics : PCCP 2022, 24, 24335–24344. doi:10.1039/d2cp01461k
  • Woitassek, D.; Lerch, S.; Jiang, W.; Shviro, M.; Roitsch, S.; Strassner, T.; Janiak, C. The Facile Deposition of Pt Nanoparticles on Reduced Graphite Oxide in Tunable Aryl Alkyl Ionic Liquids for ORR Catalysts. Molecules (Basel, Switzerland) 2022, 27, 1018. doi:10.3390/molecules27031018
  • Oh, J.; Lim, E.; Chun, J.; Jo, C. Nickel fluoride (NiF2)/porous carbon nanocomposite synthesized via ammonium fluoride (NH4F) treatment for lithium-ion battery cathode applications. Journal of Power Sources 2022, 521, 230935. doi:10.1016/j.jpowsour.2021.230935
  • Simon, I.; Haiduk, Y. S.; Mülhaupt, R.; Pankov, V.; Janiak, C. Selected gas response measurements using reduced graphene oxide decorated with nickel nanoparticles. Nano Materials Science 2021, 3, 412–419. doi:10.1016/j.nanoms.2021.03.004
  • Zhang, T.; Doert, T.; Wang, H.; Zhang, S.; Ruck, M. Ionische Flüssigkeiten und stark eutektische Lösungsmittel in der anorganischen Synthese. Angewandte Chemie 2021, 133, 22320–22338. doi:10.1002/ange.202104035
  • Kataria, J.; Devi, P.; Rani, P. Importance of structures and interactions in ionic liquid-nanomaterial composite systems as a novel approach for their utilization in safe lithium metal batteries: A review. Journal of Molecular Liquids 2021, 339, 116736. doi:10.1016/j.molliq.2021.116736
  • Zhang, T.; Doert, T.; Wang, H.; Zhang, S.; Ruck, M. Inorganic Synthesis Based on Reactions of Ionic Liquids and Deep Eutectic Solvents. Angewandte Chemie (International ed. in English) 2021, 60, 22148–22165. doi:10.1002/anie.202104035
  • Simon, I.; Savitsky, A.; Mülhaupt, R.; Pankov, V.; Janiak, C. Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite - a promising candidate for gas sensing. Beilstein journal of nanotechnology 2021, 12, 343–353. doi:10.3762/bjnano.12.28
  • Arlt, S.; Bläsing, K.; Harloff, J.; Laatz, K. C.; Michalik, D.; Nier, S.; Schulz, A.; Stoer, P.; Stoffers, A.; Villinger, A. Pseudohalogen Chemistry in Ionic Liquids with Non-innocent Cations and Anions. ChemistryOpen 2020, 10, 62–71. doi:10.1002/open.202000252
  • Schmitz, A.; Meyer, H.; Meischein, M.; Manjón, A. G.; Schmolke, L.; Giesen, B.; Schlüsener, C.; Simon, P.; Grin, Y.; Fischer, R. A.; Scheu, C.; Ludwig, A.; Janiak, C. Synthesis of plasmonic Fe/Al nanoparticles in ionic liquids. RSC advances 2020, 10, 12891–12899. doi:10.1039/d0ra01111h
  • Fedorov, P. P.; Alexandrov, A. Synthesis of inorganic fluorides in molten salt fluxes and ionic liquid mediums. Journal of Fluorine Chemistry 2019, 227, 109374. doi:10.1016/j.jfluchem.2019.109374
  • Schmolke, L.; Gregori, B. J.; Giesen, B.; Schmitz, A.; Barthel, J.; Staiger, L.; Fischer, R. A.; von Wangelin, A. J.; Janiak, C. Bimetallic Co/Al nanoparticles in an ionic liquid: synthesis and application in alkyne hydrogenation. New Journal of Chemistry 2019, 43, 16583–16594. doi:10.1039/c9nj03622a
  • Wang, Y.; Qidong, H.; Ju, M.; Li, W. New Developments in Material Preparation Using a Combination of Ionic Liquids and Microwave Irradiation. Nanomaterials (Basel, Switzerland) 2019, 9, 647. doi:10.3390/nano9040647
  • Opra, D. P.; Gnedenkov, S. V.; Sinebryukhov, S. L.; Voit, E. I.; Sokolov, A. A.; Ustinov, A. Y.; Zheleznov, V. V. Zr4+/F– co-doped TiO2(anatase) as high performance anode material for lithium-ion battery. Progress in Natural Science: Materials International 2018, 28, 542–547. doi:10.1016/j.pnsc.2018.08.001
  • Siebels, M.; Mai, L.; Schmolke, L.; Schütte, K.; Barthel, J.; Yue, J.; Thomas, J.; Smarsly, B. M.; Devi, A.; Fischer, R. A.; Janiak, C. Synthesis of rare-earth metal and rare-earth metal-fluoride nanoparticles in ionic liquids and propylene carbonate. Beilstein journal of nanotechnology 2018, 9, 1881–1894. doi:10.3762/bjnano.9.180
  • Klauke, K.; Zaitsau, D. H.; Bülow, M.; He, L.; Klopotowski, M.; Knedel, T.-O.; Barthel, J.; Held, C.; Verevkin, S. P.; Janiak, C. Thermodynamic properties of selenoether-functionalized ionic liquids and their use for the synthesis of zinc selenide nanoparticles. Dalton transactions (Cambridge, England : 2003) 2018, 47, 5083–5097. doi:10.1039/c8dt00233a
  • Taubert, A.; Löbbicke, R.; Behrens, K.; Steinbrück, D.; Kind, L.; Zhao, T.; Janiak, C. The ionic liquid [Bmim][FeCl 4 ] catalyzes the formation of iron doped mesoporous silica aerogels for H 2 O 2 decomposition. Matters 2018, 4. doi:10.19185/matters.201803000004
Other Beilstein-Institut Open Science Activities